1. If A and B are any two events, subsets of sample space S, and are not disjoint then $P(A \cup B)=$?

A.	$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
P.	$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
C.	$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
D.	$\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$

2. A bag contains 4 Red and 3 Blue balls. Two drawings of 2 balls are made. Find the chance that the first drawing gives 2 red balls and second drawing gives 2 blue balls. if the balls are not returned.

A.	$\frac{3}{49}$
B.	$\overline{3}$
C.	$\frac{\vdots}{10}$
D	$\frac{3}{35}$

3. A random variable 'X' has the following

X	0	1	2	3	4	5	6	7
$p(\mathrm{X})$	0	k	2 k	2 k	3 k	k^{2}	$2 \mathrm{k}^{2}$	$7 \mathrm{k}^{2}+\mathrm{k}$

Then the value of k ' is equal to-

A.	-1
P.	$\frac{1}{10}$
C.	${ }^{+1}$
D.	$\frac{-1}{10}$

4. Let ' x ' be a random variable. Then for

5.

For any two events A and B $\mathrm{P}[(\mathrm{A} \cap \overline{\mathrm{B}}) \cup(\mathrm{B} \cap \overline{\mathrm{A}})]$ is equal to-	
A.	$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-2 \mathrm{P}(\mathrm{A} \cap \mathrm{B})$
B.	$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+2 \mathrm{P}(\mathrm{A} \cap \mathrm{B})$
C.	$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
D.	$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

6. If $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots . \mathrm{X}_{\mathrm{n}}$ are random variables, then $\mathrm{E}\left(\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{n}\right)=$?

A.	$\mathrm{E}\left(\mathrm{X}_{1}\right) \cdot \mathrm{E}\left(\mathrm{X}_{2}\right) \cdot \mathrm{E}\left(\mathrm{X}_{3}\right) \ldots . \mathrm{E}\left(\mathrm{X}_{\mathrm{n}}\right)$
B.	$\mathrm{E}\left(\mathrm{X}_{1}\right)+\mathrm{E}\left(\mathrm{X}_{2}\right)+\mathrm{E}\left(\mathrm{X}_{3}\right)+\ldots .+\mathrm{E}\left(\mathrm{X}_{\mathrm{n}}\right)$
C.	$\mathrm{E}\left(\mathrm{X}_{1}\right)+\mathrm{E}\left(\mathrm{X}_{2}\right)+\mathrm{E}\left(\mathrm{X}_{3}\right)+\ldots .+\mathrm{E}\left(\mathrm{X}_{\mathrm{n}}\right)$ if all the expectations exist
D.	$\mathrm{E}\left(\mathrm{X}_{1}\right)-\mathrm{E}\left(\mathrm{X}_{2}\right) \cdot \mathrm{E}\left(\mathrm{X}_{3}\right) \ldots . \mathrm{E}\left(\mathrm{X}_{\mathrm{n}}\right)$ if all the expectations exist

If X and Y are statistically independent
2) If X and Y are statistically dependent
3) For all X and Y 4) If X and Y are identical
8. If X is a random variable and ' a ' and ' b ' are constants, then $E(a x+b)=$ \qquad provided all the expectations exist.

1) a $E(X)$
2) a $E(X)+b$
3) $E(X)+b$
4) $a+b$
9. $\quad \mathbf{M}_{\mathbf{c x}}(\mathrm{t})=$ \qquad , c being a constant.
1) $M_{x}(t)$
., $M_{c}(t x)$
M_{x} (ct)
2) 0
10. If X is a random variable and $\mathrm{f}(\mathrm{x})$ be the probability function, then subject to the convergence, the function $\sum e^{x} f(x)$ is known as-
F. Moment generating function
B. Probability density function
C. Probability distribution function
D. Characteristic function
11. If F is the distribution function of the random variable X and if $\mathrm{a}<\mathrm{b}$, then $\mathrm{P}(\mathrm{a}<\mathrm{X} \leq \mathrm{b})=$?
1) $P(X=a)+[F(b)-F(a)]$
$F(b)-F(a)$
2) $F(b)-F(a)-P(X=b)$
3) $F(b)-F(a)-P(X=b)+P(X=a)$
12. If $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is the joint probability density function. then the narginal density function of $X . f(x)$ is:

A.	$\int_{-x}^{a} f(x, y) d y$
B.	$\int_{0}^{x} f(x, y) d y$
C.	$\int_{-x}^{x} f(x, y) d y$
D.	$\int_{-x}^{x} f(x, y) d x$

13. If $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots . \mathrm{X}_{n}$ is a sequence of random variables and if mean μ_{g} and standard deviation σ_{n} of X_{a} exists for all n and if σ_{n} $\rightarrow 0$ as $n \rightarrow \tau$, then-

\boldsymbol{A}	$\mathrm{X}_{\mathrm{n}}-\mu_{\mathrm{a}} \xrightarrow{\vec{p}} 0$ as $\mathrm{n} \rightarrow \infty$
B.	$\mathrm{X}_{\mathrm{a}}-\mu_{\mathrm{n}} \longrightarrow$ constant as $\mathrm{n} \rightarrow \infty$
C.	$\mathrm{X}_{\mathrm{a}}-\mu_{\mathrm{n}} \xrightarrow{p} 1$ as $\mathrm{n} \rightarrow \infty$
D.	$\mathrm{X}_{\mathrm{a}}-\mu_{\mathrm{n}} \xrightarrow{\longrightarrow} \overline{\mathrm{X}}_{\mathrm{n}}$ as $\mathrm{n} \rightarrow \infty$

wwwunscstudymaterials.com
14. If $\left\{\mathrm{X}_{n}\right\}$ is a sequence of independent and identically distributed with $E\left(X_{i}\right)=\mu$ and $V\left(X_{i}\right)=\sigma^{2}$ and $\operatorname{let} \lim _{x \rightarrow \infty} \frac{\sigma^{2}}{n}=0$, then:

Pr\|	$\bar{X}_{n} \xrightarrow{?} \mu$
B.	$\bar{X}_{a} \xrightarrow{?} 0$
C.	$\bar{X}_{s} \xrightarrow{P} 1$
D.	$\bar{X}_{a}-\mu \xrightarrow{?} 1$

15.

If converges to-	
A.	p
Zero	
B.	One constant then $\mathrm{E}\left(\mathrm{X}_{\mathrm{n}}-\mathrm{c}\right)^{2}$
C.	Infinity
D.	Almost surely

16.

If $\mathrm{X}_{\mathrm{n}} \xrightarrow{\mathrm{P}} \mathrm{X}_{\text {and }} \mathrm{Y}_{\mathrm{n}} \xrightarrow{\mathrm{P}} \mathrm{Y}$ then XX_{n} converges to-
A. aX , if a real
B. X_{n}, if a real
C. $X_{n}+1$, if a real
D. $X_{n}+Y_{n}$, if a real
17. If X:'s are i.i.d with mean mind whianto $\sigma_{1}^{2}($ finite $)$ and $S_{s}=\sum_{i=1}^{n} X$, then:
A. $\lim _{\mathrm{a} \rightarrow \mathrm{P}} \mathrm{P}\left[\frac{\mathrm{S}_{\mathrm{a}}-\mathrm{E}\left(\mathrm{S}_{\mathrm{a}}\right)}{\sqrt{\operatorname{var}\left(\overline{\mathbf{S}_{n}}\right)}} \leq 0\right] \rightarrow 0$
B. $\lim _{=\rightarrow \mathbb{Z}} P\left[\frac{S_{x}-E\left(S_{n}\right)}{\sqrt{\operatorname{var}\left(S_{n}\right)}} \leq 0\right] \rightarrow 1$
$\lim _{n \rightarrow \infty} P\left[\frac{S_{n}-E\left(S_{n}\right)}{\sqrt{\operatorname{var}\left(S_{n}\right)}} \leq 0\right] \rightarrow \frac{1}{2}$
D. $\lim _{n \rightarrow \infty} P\left[\frac{S_{2}-E\left(S_{n}\right)}{\sqrt{\operatorname{var}\left(\bar{S}_{n}\right)}} \leq 0\right] \rightarrow 0.6728$
18.

If $X_{n} \xrightarrow{L} X, Y_{n} \xrightarrow{L} C$ then $\xrightarrow[\mathrm{Y}]{\mathrm{X}} \xrightarrow{\mathrm{L}} \frac{\mathrm{X}}{\mathrm{C}}$ if.

1. C is a constant and not equal to zero
B. C is equal to zero
C. C is closed
D. C is bounded
2.

$\int g d F_{n} \rightarrow \int g d F$ iff $F_{n} \xrightarrow{a} F$ if g is:	
A	Continuous and bounded
B.	Continuous and unbounded
C.	Continuous and almost surely
D.	Continuous everywhere

20.

WLLN holds iff the following condition is	
satisfied:	
A	$\lim \sum_{1}^{n} P_{n}\left[X_{n} \neq X_{k}^{n}\right] \rightarrow 0$
B.	$\lim \sum_{1}^{n} P\left[X_{n}=X_{k}^{s}\right] \rightarrow 0$
C.	$\lim \sum_{:}^{n} P\left[X_{n} \neq X_{k}^{z}\right] \rightarrow 1$
D.	$\lim \sum_{k}^{n} P\left[X_{n} \neq X_{k}^{n}\right] \rightarrow \infty$

21. If X_{k} 's are independent and identically distributed random variables then $\frac{S_{n}}{n} \rightarrow c$

A. Infinite number

Finite number
C. Less than infinite
D. Greater than infinite
22. CLT is sometimes stated as the convergence of-

Binomial to normal distribution
3) Exponential distribution
2) Normal distribution
4) Poisson distribution
23. If $\left\{\mathrm{X}_{\mathrm{k}}\right\}$ be a sequency of i.i.d random variables with $\mathrm{E}\left(\mathrm{X}_{\mathrm{k}}\right)=0$ and $\sigma\left(\mathrm{X}_{\mathrm{k}}\right)=\sigma<\infty$
then the distribution function of $\frac{\sqrt{n}\left(\overline{\mathrm{X}}_{n}\right)}{\sigma}$ is converges to-

A.	Standard normal distribution
B.	Binomial distribution
C.	Poisson distribution
D.	Exponential distribution

24. Binomial distribution applies to-
1) Rare events
2) Repeated three alternatives
T) Repeated two alternatives
3) Repeated four alternatives
25. Mode of binomial distribution when $(n+1) p$ is an integer is:
m and $\mathrm{m}-1$ (two values)
2) m (one value)
3) m - 1 (one value)
4) m and $\mathrm{m}+1$ (two values)
26. The property of consistency ensures that the difference between the estimator and the parameter would become smaller and smaller in probability sense as:
1) n is equal to zero
2) in is very small
3) n is large
n increases indefinitely
27. For a binomial distribution, variance is:
i) Greater than meanWWW. UlOSCStU dymenaticridils. COM

21 Less than mean
4) Not equal to mean
28.

If X and Y are independent Poisson	
variates then the $\mathrm{P}\left(\frac{\mathrm{X}}{\mathrm{X}+\mathrm{Y}}\right)$ is:	
C.	Binomial distribution
B.	Poisson distribution
C.	Negative binomial distribution
D.	Hypergeometric distribution

29. The distribution which has a variance larger than the mean is:
Negative binomial distribution
2) Binomial distribution
3) Poisson distribution
4) Hypergeometric distribution
30.

The probability generating function of negative binomial distributionis:	
A.	$\frac{p}{(1-q s)}$
	$\left[\frac{p}{(1-q)}\right]^{I}$
C.	$\frac{\mathrm{P}^{\mathrm{x}}}{\left(1-\mathrm{q}^{5}\right.}$
D.	$\frac{\mathrm{p}}{\left(1-q^{5}{ }^{5}\right.}$

31. The momentrecurrence formula for negative binomial distribution $\mu_{\mathrm{r}}+1$ is:
A. $\left\{\frac{d \mu_{t}}{d p}-\frac{r k}{P^{2}} \mu_{k}\right)$

B.	$\left(\frac{d 4 k^{2}}{d q}+\frac{k}{p^{2}} \mu_{r}-1\right)$
C.	$\mathrm{q}\left(\frac{\mathrm{d} \mu_{\mathrm{s}}}{\mathrm{dq}}+\frac{\mathrm{mk}}{\mathrm{p}^{2}} \mu_{\mathrm{t}}-1\right)$
	$\mathrm{q}\left(\frac{\mathrm{d} \mu_{\mathrm{t}}}{\mathrm{dq}}+\frac{\mathrm{rk}}{\mathrm{p}^{2}} \mu_{\mathrm{r}}-1\right)$

32. The $\mathrm{r}^{\text {th }}$ factorial moment in hypergeometric discribution is:
A. $\frac{\lambda I^{\prime 2} n}{N^{n}}$
B. $\frac{\frac{\Delta \Gamma^{2} n^{2}}{N^{2}}}{\text { 1. }} \frac{\frac{\Gamma^{\prime} n^{2}}{N^{2}}}{}$
D. $\frac{\mathrm{Mn}}{\mathrm{N}}$
33. The rejectable quality level is:
1) The quality level having a probability of acceptance
2) The average percentage defective in the outgoing products after inspection
3) The maximum proportion of defectives, which the consumer finds definitely acceptable

Proportion of defectives, which the consumers finds definitely unacceptable
34. For large values of σ in normal distribution, the curve tends to-

1) Peak
2) Flatten
3) Semi peak
4) Sharp peak
35. Normal distribution is a limiting case of Poisson distribution when-

$$
\lambda \rightarrow \infty
$$

B. $\lambda \rightarrow 1$
C. $\lambda \rightarrow 0$
D. $\lambda \rightarrow-\infty$
36. If X_{1} and X_{2} are independent cauchy variate then $X_{1}+X_{2}$ is a -

1) Normal variate
2) Uniform variate
3) Cauchy variate
4) Gamma variate
37. For a Beta distribution first kind $\frac{4\left(\tau^{-}-\mu\right)^{2}(\mu+\tau+1)}{\mu \tau(\mu+v+2)^{2}}$ is the value of-
A. μ_{3}

38.

For	a Beta distribution of second kind $\mu_{\text {r }}$
A.	$\frac{\mu-\mathrm{r} \sqrt{(\mu-\mathrm{r})}}{\sqrt{\mu} \sqrt{\mathrm{r}-1}}$
B.	$\frac{\sqrt{\mu} \sqrt{r}}{\sqrt{1-1}}$
8	$\frac{\sqrt{(\mu+1)} \sqrt{(\mu-r)}}{\sqrt{\mu} \sqrt{r}}$
D.	$\frac{\sqrt{(1-\sqrt{(1-1)}}}{\sqrt{\frac{15-1}{x}}}$

39. The mean of exponential distribution is:
A. θ
B. θ^{2}

ل. $\frac{1}{\theta}$
D. $\frac{1}{\theta^{2}}$
40.

Moment generating function of gamma distribution is:	
A.	$\left(1-\mathrm{e}^{\mathrm{t}}\right)^{-\lambda},\|\mathrm{t}\|<1$
F.	$(1-\mathrm{t})^{-\lambda},\|\mathrm{t}\|<1$
C.	$(1-\lambda)^{-\mathrm{t}},\|\mathrm{t}\|>1$
D.	$(1+\mathrm{t})^{-\lambda},\|\mathrm{t}\|>1$

41. The $r^{\text {th }}$ moment of Weibull distribution is:

A.	$\sqrt{(\mathrm{r}+1)}$
D.	$\sqrt{\left(\frac{\mathrm{r}}{\mathrm{c}}+1\right)}$
C.	$\frac{\sqrt{\mathrm{r}+\mathrm{c}}}{1}$
D.	$\sqrt{\mathrm{c}+1}$

42.

Gamma distribution tends to normal distribution as-	
A.	$\lambda \rightarrow 1$
F.	$\lambda \rightarrow \infty$
C.	$\lambda \rightarrow 0$
D.	$\lambda \rightarrow-\infty$

43. If X follows cauchy distribution then $X^{\mathbf{2}}$ follows-
1) Cauchy distribution
2) Normal distribution
) Beta distribution of second kind
3) Beta distribution of first kind
44. The linear combination of independent normal variate is a-
Normal variate
2) Uniform variate
3) Beta variate
4) Gamma variate
45.

An estimator $\mathrm{t}_{\mathrm{n}}=\mathrm{t}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right)$ drawn from a sample of size n is said to be an unbiased estimator of a population parameter θ if-	
h.	$\mathrm{E}\left(\mathrm{t}_{\mathrm{n}}\right)=\theta$
B.	$\mathrm{E}\left(\mathrm{t}_{\mathrm{n}}\right)>\theta$
C.	$\mathrm{E}\left(\mathrm{t}_{\mathrm{n}}\right)<\theta$
D.	$\mathrm{E}\left(\mathrm{t}_{\mathrm{n}}\right) \neq \theta$

46. An estimator $\mathrm{t}_{\mathrm{n}}=\mathrm{t}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right)$ based on a sample of size n is said to be negatively biased estimator of a population parameter θ if-
A. $E\left(t_{n}\right)=\theta$ WWW.upscstudymaterials.com
B. $E\left(t_{n}\right)>\theta$
C. $\mathrm{E}\left(\mathrm{t}_{\mathrm{n}}\right)<\theta$
47.

For Cauchy distribution variance of Median is equal to-	
A.	$\frac{\pi^{2}}{2 n}$
b.	$\frac{\pi^{2}}{4 n}$
C.	$\frac{\pi^{2}}{4}$
D.	$\frac{\pi^{2}}{n}$

48.

If t_{1} is the most efficient estimator with variance v_{1} and $t 2$ is any otherestimator with variance va . then the efficiency E of t_{2} is defined as-

A.	$\frac{r_{2}}{r_{1}}$
F.	$\frac{r_{1}}{r_{2}}$
C.	$\frac{r_{8}}{r_{1}} \times 100$
D.	$\frac{r_{2}}{r_{2}} \times 100$

49.

| An estimator t_{n} is said to be sufficient for |
| :--- | :--- |
| estimating a population parameter θ, if |
| the joint density function of the sample |
| values can be expressed in the form- |

50. If t is a sufficient estimator for the parameter θ and if $\psi(t)$ is a one to one function of t, then $\psi(t)$ is
\qquad for $\psi(\theta)$ -
1) Unbiased
2) Efficient
3) Consistent
51. Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ be a random sample from a population with probability density function $f / \pi, \theta:=\theta x^{\theta-1}: 0<x<1, \theta>0$, then the sufficient estimator for θ is:

A.	$\sum_{i=1}^{n} x_{i}$
J.	$\prod_{i=1}^{n} x_{i}$
C.	$\theta \prod_{i=1}^{n} x_{i}$
D.	$\theta \sum_{i=1}^{n} x_{i}$

52. In Cramer-Rao inequality the amount of information on θ supplied by the sample ($x_{1}, x_{1}, . . x_{n}$) is:
A. $I \cdot \theta=E_{1}^{\prime} \frac{\hat{c} \log L}{c \theta}$,
P. $\mathrm{I} \cdot \theta=\mathrm{E}\left(\frac{\partial}{\partial \theta} \log L\right)^{2}$
C. $I(\theta)=E\left(\frac{\partial^{n}}{\partial \theta^{n}} \log \mathrm{~L}\right)$
D. $I(\theta)=\frac{1}{E\left(\frac{\delta}{\partial \theta} \log L\right)^{2}}$
53. Let θ be an unknown parameter and t_{1} be an unbiased estimator or θ, ir var($\left.t_{1}\right) \leq \operatorname{var}\left(t_{2}\right)$ for t_{2} to be any other unbiased estimator, then t_{1} is known as-

Minimum variance unbiased estimator
3) Consistent and efficient estimator
2) Unbiased and efficient estimator
4) Unbiased. consistent and minimum variance estimator
54. Let X and Y be random variables such that $\mathrm{E}(\mathrm{Y})=\mu$ and $\operatorname{Var}(\mathrm{Y})=\sigma^{2}>0$
Let $E\left(\frac{Y}{X}=x\right)=\varphi(x)$. Then:

55. If a statistical hypothesis specifies the population completely then it is termed as-

Simple hypothesis
3) Null hypothesis
56. The probability of Type I error is denoted by1) α
3) β
2) Composite hypothesis
4) Alternative hypothesis
2) $1-\alpha$
4) $\mid-\beta$
57. The critical region ' w ' is the most powerful critical region of size a for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ if-
A. $P\left(X \in w / H_{0}\right)=\alpha \operatorname{andP}\left(X \in w / H_{1}\right) \leq P\left(X \in w_{1} / H_{1}\right)$
7. $\mathrm{P}\left(\mathrm{X} \in \mathrm{w} / \mathrm{H}_{0}\right)=\alpha$ and $\mathrm{P}\left(\mathrm{X} \in \mathrm{w} / \mathrm{H}_{1}\right) \geq \mathrm{P}\left(\mathrm{X} \in \mathrm{w}_{1} / \mathrm{H}_{1}\right)$
C. $P\left(X \in w / H_{0}\right)=\alpha$ and $P\left(X \in w / H_{1}\right)=P\left(X \in w_{1} / H_{1}\right)$
D. $P\left(X \in w / H_{0}\right)=\alpha$ and $P\left(X \in w / H_{1}\right) \neq P\left(X \in w_{1} / H_{1}\right)$
58. Let P be the probability that a coin will fall head in a single toss in order to test $\mathrm{H}_{0}: \mathrm{P}=\frac{1}{2}$ against $\mathrm{H}_{\mathrm{t}}: \mathrm{P}=\frac{3}{4}$. The coin is tossed 5 times and H_{0} is rejected if more than 3 heads are obtained. Then the probability of Type I error is:

	$\frac{3}{16}$
B.	$\frac{81}{128}$
C.	$\frac{47}{128}$
D.	$\frac{13}{16}$

59. If $x \geq 1$ is the critical region for testing $H_{0}: \bar{\theta}=2$ against the altemative $H_{1}: \theta=1$ on the basis of single observation from the population $f(x, \theta)=\theta e^{-\frac{f}{x}}, x \geq 0$, then the value of Type e emorisWWW. Upscstudymaterials.com

B.	$\frac{e^{2}-1}{e^{2}}$
C.	$\mathrm{e}^{-\mathrm{x}}$
D.	$1-\mathrm{e}^{-\mathrm{x}}$

60. Under certain condition, $-2 \log _{\epsilon} \lambda$ where λ is the likelihood ratio test, has:

F.	An asymptotic Chi-square distribution
B.	Normal distribution with parameters μ and σ^{2}
C.	$\mathrm{N}(0,1)$
D.	Poisson distribution

61. If β is the probability of type II error, then $(1-\beta)$ is called \qquad of the test.
1) Power
2) Level of significance
62. If two independent random samples with sample sizes n_{1} and n_{2} respectively from the same population with standard deviation σ, then the 95% confidence interval for the difference between the means is:

	$\left.\left(x_{1}-x_{2}-1.96 \sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{1}}} \times x_{1}-x_{2}\right)+1.96 \sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\right)$
B.	$\left(\left(s_{1}-s_{2}\right)-1.96 \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}},\left(x_{1}-x_{2}\right)+1.96 \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\right)$
C.	$\left.\left(x_{1}-x_{2}\right)-2.58 c \sqrt{\frac{1}{n_{1}}-\frac{1}{n_{2}}}, M_{1}-x_{1}+2.680 \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\right)$
D.	$\left(\left(m_{1}-\bar{z}_{2}\right)-2.58 \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}},\left(\bar{x}_{1}-\bar{x}_{2}\right)+258 \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\right)$

63. A sample is said to be a small sample if-
1) $n<30$
2) $\mathrm{n} \geq 30$
3) $n<20$
4) $n<15$
64. Non parametric tests are useful only when-
Location parameter is of interest
2) Scale parameter is of interest
3) Sample size is large
4) Sample size is small
65. The Kolmogorov statistic is used for-
1) One sample probien WW. USSCStUCY rwosmpipprob!mon
2) Distribution is known
3) Distribution is not known
66.

Using the technique of factorial movements for the distribution $f_{\mathrm{U}}^{(\mathrm{U})}$ mean is usually found to be-	
I.	$\frac{\mathrm{mt}}{\mathrm{N}}$
B.	$\frac{\mathrm{mt}^{2}}{\mathrm{~N}}$
C.	$\frac{\mathrm{mt}^{3}}{\mathrm{~N}}$
D.	$\frac{\mathrm{mt}^{4}}{\mathrm{~N}}$

The test statistic in the case of Mann Whitney statistic in the case of large sample is:	
	$Z=\frac{U-\frac{\min }{2}}{\sqrt{\frac{m n-1}{12}}}$
B.	$z=\frac{U-\frac{\pi n}{2}}{\sqrt{\frac{\pi n}{x}}}$
C.	$z=\frac{u-\frac{3: 11}{2}}{\sqrt{\frac{m a x-1}{6}}}$
D.	$\mathrm{Z}=\frac{\mathrm{U}}{\sqrt{\mathrm{~mm}}}$

68. The percentage of operating time that an equipment is operational is called as:
Time availability
2) Equipment availability
3) Mission availability
4) System availability
69. In SPRT, α and β are fixed constants where as the sample size n is not fixed but regarded as-
1) Normal variable
2) Poisson variable
Random variable
3) Type I error
70. Relative efficiency in non parametric tests is the ratio of-
1) Power of two tests
2) Size of two tests
Size of the samples
3) Size of the tests
71. The confidence interval based Wilcoxon test leads to same results in the case of-
1) Median test

Mann - Whitney test
2) Run test
4) Kolmogorov test
 unidirectional-deviation test is based on the statistic:

A.	$D_{m, n}^{-}=\operatorname{Min}_{n}\left[s_{m}(x)-s_{n}(x)\right]-1$
C.	$D_{m, n}^{-}=\underset{n}{\operatorname{Min}\left[s_{m}(x)-s_{n}(x)\right]}$
C.	$D_{m, n}^{-}=\underset{n}{\operatorname{Max}\left[s_{m}(x)-s_{n}(x)\right]}$
D.	$D_{m . n}^{-}=\underset{n}{\operatorname{Max}\left[s_{n}(x)-s_{m}(x)\right]}$

73. The distribution of m under the null
hypothesis $\mathrm{H}_{0}: \mathrm{f}_{1}(\mathrm{x})=\mathrm{f}_{2}(\mathrm{x})$, then the $\mathrm{v}(\mathrm{m})$ under hypergeometric distribution in the case of median test when N is:
$\int \frac{n_{1} n_{2}(N+1)}{4 N^{2}}$
B. $\frac{n_{1} n_{2} N}{4}$
C. $\frac{\mathrm{n}_{1} \mathrm{n}_{2}(\mathrm{~N}+1)^{2}}{4}$
D. $\frac{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{~N}}{16}$
74. Let $\mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}$ be observed random variables such that $Y_{1}=\theta_{1}+\epsilon_{1}, Y_{2}=\theta_{1}+\theta_{2}+\epsilon_{2}, Y_{3}=\theta_{2}+\epsilon_{3}$ $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$. Find which one of the following is not linearlyestimable?

A.	θ_{1}
B.	θ_{2}
C.	θ_{3}
D.	θ_{1} and θ_{2}

 model is called-

1) Regression model
2) Analysis of variance model
3) Analysis of covariance model
4) Weighted least squares
76. In the general linear model $Y=X \beta+\epsilon$, to test the linear hypothesis $H_{0}: H \beta=0$, the likelihood ratio statistic follows-
F-distribution
2) t - distribution
3) Chi-square distribution
4) Gamma distribution
77. For a normal distribution the mean deviation about mean is approximately given by-

A.	$\frac{4}{5} \sigma$
B.	$\frac{5}{6} \sigma$
	$\frac{4}{3} \sigma$
D.	$\frac{4}{9} \sigma$

78.

Let $Y_{1}, Y_{2} \ldots \ldots . Y_{n}$ be n independent observations from a population with Mean μ and Variance σ^{*} then the BLUE of μ is:	
A.	$\frac{Y_{1}+Y_{2}}{2}$
B.	$\frac{Y_{1}+Y_{2}+\ldots+Y_{n}}{n-1}$
C.	\bar{Y}
D.	$\sum_{i=1}^{n} Y_{i}$

79. Choose the correct option: The estimate of β in the linear model.
1) Maximizes $(Y-X \beta)^{\prime}(Y-X \beta)$
2) Minimizes the likelihood
万 Minimizes $(\mathrm{Y}-\mathrm{X} \beta)^{\prime}(\mathrm{Y}-\mathrm{X} \beta$)
3) Is biased
80. Under Gauss - Markov theorem BLUE and OLS are-
1) Not equal
2) Cannot be compared
Same
3) Greater than the other
81. To test the hypothesis that the slope equalsconstanti.e $H_{0} \quad \beta_{2}=\beta_{10}$
$H_{1} \quad \beta_{1} \neq \beta_{10}$. We use the test statistic:

82. The set of equations in the process of least square estimation are called-
1) Intrinsic equation
2) Homogeneous equation
83.

84. The vector $X^{(1.2)}=X^{(1)}-\mu^{(1)}-\beta\left(X^{(2)}-\mu^{(2)}\right)$ is the vector of residuals of-

1) $X^{(2)}$ from its regression on $X^{(1)}$

- $\mathrm{X}^{(1)}$ from its regression on $\mathrm{X}^{(2)}$

3) $X^{(1)}$ from its correlation with $X^{(2)}$
4) $X^{(2)}$ from its regression on $X^{(3)}$
85. The sample multiple correlation coefficient R is:
c. $\sqrt{\frac{\mathrm{a}_{11}^{1} \mathrm{~A}_{22}^{-1} \mathrm{a}_{(1)}}{\mathrm{a}_{11}}}$
B.
$\sqrt{\sqrt{\frac{a_{(2)}^{1} A_{12}^{-1} a_{1}}{a_{n a}}}}$
C. $\sqrt{\frac{a_{1}^{1} A_{22}^{-1} \mathrm{a}_{(1)}}{\mathrm{a}_{22}}}$
D. $\sqrt{\frac{a_{(2}^{1} A_{22}^{1} a_{11}}{a_{11}}}$
86. Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}$. be N(p-component) vectors, and S is the mean vector. Then any vector
b,
$\sum_{\alpha=1}^{N}\left(x_{\alpha}-b\right)\left(x_{\alpha}-b\right)^{\prime}=?$
$\sum^{n}\left(x_{a}-\bar{x}\right)\left(x_{a}-\bar{x}\right)^{\prime}+N(\bar{x}-b)(\bar{x}-b)^{\prime}$
B. $\sum_{\alpha=1}^{3}\left(x_{\alpha}-\bar{x}\right)^{\prime}\left(x_{\alpha}-\bar{x}\right)+N(\bar{x}-b)$
C. $\sum_{\alpha=1}^{N}\left(x_{\alpha}-\bar{x}\right)\left(x_{\alpha}-\bar{x}\right)^{\prime}+N \sum_{\alpha=1}^{N}\left(\bar{x}_{\alpha}-b\right)\left(\bar{x}_{\alpha}-b\right)^{\prime}$
D.
$\sum_{a=1}^{N}\left(x_{a}-\bar{x}\right)\left(x_{a}-\bar{x}\right)^{2}+(N-1)(\bar{x}-b)(\bar{x}-b)^{\prime}$
87. If $Y=D X+f$, where X is a random vector, then $\varepsilon Y=$?
D $\varepsilon X+f$
2) $D X+f$
3) $\varepsilon X+f$
4) $\varepsilon X+D$
88.

The multivariate normal density is:	
R	$(2 \pi)^{-\frac{1}{2} \mathrm{p}}\|\Sigma\|^{-\frac{1}{2}} \mathrm{e}^{-\frac{1}{2}(\mathrm{x}-\mu)^{\cdot} \Sigma^{-1}(\mathrm{x}-\mu)}$
B.	$(2 \pi)^{\frac{1}{2} \mathrm{p}}\|\Sigma\|^{-\frac{1}{2}} \mathrm{e}^{-\frac{1}{2}(x-\mu)^{\cdot} \Sigma^{-1}(x-\mu)}$
C.	$(2 \pi)^{\frac{1}{2} \mathrm{p}}\|\Sigma\|^{\frac{1}{2}} \mathrm{e}^{-\frac{1}{2}(\mathrm{x}-\mu)^{\cdot} \Sigma(\mathrm{x}-\mu)}$
D.	$(2 \pi)^{\frac{1}{2}}\|\Sigma\|^{\frac{1}{2} \mathrm{p}} \mathrm{e}^{-\frac{1}{2}(x-\mu)^{\prime} \Sigma(\mathrm{x}-\mu)}$

89. If the m-component vector Y is distributed according to $N(v, T)$, then $Y^{\prime} T^{-1} Y$ is distributed according to-
1) X^{2} with m degrees of freedom

Non central X^{2} with m degrees of freedom
4) Non central F with m degrees of freedom
90.

To test the hypothesis that $\mu=\mu_{0}$ where μ_{0}	
is a specified vector, the critical region	
$N\left(\bar{x}-\mu_{0}\right)^{\prime} \Sigma^{-1}\left(\mathrm{x}-\mu_{0}\right)^{25}:$	
A	Greater than $x_{p}^{2}(\alpha)$
B.	Less than $\mathrm{x}_{\mathrm{p}}^{2}(\alpha)$
C.	Greater than $x_{p-2}^{2}(\alpha)$
D.	Less than $x_{n}^{2}(\alpha)$

91. For testing the null hypothesis $\mu^{(1)}=\mu^{(2)}$, the critical region is:

A	$\mathrm{T}^{2}>\frac{\left(N_{1}+N_{2}-2\right) p}{\left(N_{1}+N_{2}-p-1\right)} F_{P_{1} N_{1}+N_{2-p-1}(\alpha)}$
B.	$T^{2}<\frac{\left.N_{1}+N_{2}-2\right) p}{\left(N_{1}+N_{2}-p-1\right)} F_{P_{1} N_{1}+N_{2}-p-1}(\alpha)$
C.	$T^{2}>\frac{\left(N_{1}+N_{2}-1 / p\right.}{\left(N_{1}+N_{2}-p\right)} F_{P_{1} N_{1}+N_{2-p}(\alpha)}$
D.	$T^{2}<\frac{\left(N_{1}+N_{2}-2\right) p}{\left(N_{1}+N_{2}-1\right)} F_{P_{1}} N_{1}+N_{2-p-1}(\alpha)$

Www:uipsestudymaterials.com

92. Which of the following entity does not belong to word processing?
1) Characters
2) Words
Cells
3) Paragraphs
93. \qquad is the lowest level of programming language where the information is represented as 0 's and 1's-
1) FORTRAN
2) C
Machine language
3) Assembly language
94. \qquad translates a high level language program to a machine language program.
Compiler
2) Assembler
3) Linker
4) A and B
95. READ $(3,10)$ MASS In the above FORTRAN statement, MASS is a \qquad .
1) Keyword
2) Variable
3) Constant
4) Symbol
96. $<,>$ and $=$ are \qquad operators.
1) Arithmetic
c) Relational
2) Logical
3) Ternary
97. Lotus $1-2-3$ is a \qquad program.
1) Word processor
Worksheet
2) Database
98. \qquad function is used to create shortcut formula in Lotus 1-2-3.
1) $\#$
2) @(a)
) (a)
3) \#\#
99. \qquad key is used only in combination with the ten function keys to produce various line and box $\overline{\text { drawing characters in word star. }}$
1) Shift
2) Ctr
Alt
3) Page down
100. \qquad statement informs the compiler about the array variable, its size and arrangement of array elements.
DIMENSION
2) SIZE OF
3) MALLOC
4) COMPUTE
101. The technique of reducing the block size in the factorial experiment by sacrificing one or more eflects is known as-
1) Balanced incomplete design

Confounding
3) Lattice Design
4) Strip-plot Design
102. For the 4×4 LSD, the sum of square due to error is 156.37 , then Mean sum of square due to error is :

1) 39.925
2) 52.12
26.06
3) 27.2

4) The effects of blocks, treatments and error are additive
5) The observations have drawn from normal
6) The observations are distributed independently

- Variance of the observations is not constant

104. In a 2^{2} Factorial experiment, $a_{0} b_{0}=18, a_{1} b_{0}=17, a_{0} b_{1}=25$ and $a_{1} b_{1}=30$, then sum of squares for the interaction AB is:
1) 4
2) 3
3) 6
4) 7
105. In a randomized block design with 4 blocks and 6 treatments having one missing value, the error degrees of freedom is:

- 15

2) 14
3) 22
4) 12
106. In the split plot design with factor A at p levels in main plots, factor B at q levels in sub-plots and r replications, then the degrees of freedom for main-plot error is:
1) $(q-1)(r-1)$
2) $(p-1)(r-1)$
3) $P(q-1)(r-1)$
4) $(p-1)(q-1)(r-b)$

A balanced incomplete block design with the following parameters was used for the tial, $v=\mathrm{b}=13, \mathrm{r}=\mathrm{k}=4, \mathrm{~A}=1$ then the efficiency factor E is:	
L.	$\frac{13}{16}$
B.	$\frac{16}{13}$
C.	$\frac{5 \mathrm{I}}{13}$
D.	$\frac{13}{52}$

108. For the 2^{2} Factorial experiment with 4 blocks, the factorial effect totals of $[A]=40,[B]=28$ and $[A B]$ $=28$, then the mean sum of square for the treatment B, is:
1) 100
2) 50
3) 25
109. If $\frac{5}{2}_{\frac{3}{2}}$ is the mean sum of square due to error celated wath Randomized Block Design with ' r ' blocks and K ' treatments then for the ct-level of significance the critical difference betweenany rwo treatments is

A.	
B.	$=1-x^{i e g} x-1 k-1 \times \sqrt{\frac{2 s_{E}^{2}}{k}}$
c.	$=\text { ofozit }-1 k-1 \times \sqrt{\frac{2 z_{E}^{q}}{\mathrm{t}}}$
1	

110. If $\mu, r_{i}, c_{j}, t_{s}(i=j=s=1,2, \ldots k)$ are fixed effects denoting in order the general mean, the row, the column, the treatments effeets and E_{ij} is the error component, then the model for LSD, is:
$\int Y_{i j}=\mu+r_{i}+c_{j}+t_{s}+E_{i j}$
2) $Y_{i j}=\mu-r_{i}-c_{j}+t_{s}+E_{i j}$
3) $Y_{i j}=\mu-r_{i}+c_{j}-t_{s}+E_{i j}$
4) $Y_{i j}=\mu+r_{i}+c_{j}-t_{s}-E_{i j}$
111. In connection with reliability, the bathtub curve exhibits:
1) 2 distinct zones
C) 3 distinct zones
2) 4 distinct zones
3) 5 distinct zones
112.

Given $\bar{p}=0.2, \mathrm{n}=64$, the lower control limit for the np control chart is:

A.	22.4
P.	3.2
C.	12.8
D.	9.6

113. In any sampling plan, if \mathbf{c} is the acceptance number, then the rejection number is:
1) $1-c$
2) $\mathrm{c}+1$
3) $\mathrm{c}-\mathrm{l}$
4) c^{2}
114. The OC function of SPRT for testing
$\mathrm{H}_{0}: \theta=\theta_{0}$ againsz $\mathrm{H}_{1}: \theta=\theta_{1}$ in sampling from population with density function $f(x, \theta)$ is:
A. $\quad L_{i}=\frac{A^{t E}-1}{A^{E t}-B^{s t}}$ widh $E\left[\frac{f\left(x, \theta_{1}\right.}{i^{\prime} \times \theta_{0}}\right]^{b \mathrm{E}}=0$

D. $L, \theta=\frac{A^{n \theta}-B^{n \theta}}{A^{2}-1}$ uid $E\left[\frac{f\left(x, \theta_{0}\right)^{7 x}}{f\left(x, \theta_{0}\right)}\right]^{4}=1$
115. For the control chart for fraction non conforming, if the process is in control with the probability of a point plotting in control is 0.9973 , then the average run length is:
1) 1
2) 170
370
3) 270
116. Given $\Sigma R=9.00, N=20, D_{3}=0.41$ and $D_{4}=1.59$, the LCL and UCL for R chart are-
1) $0.185,7.16$
$0.185,0.716$
2) $1.85,7.16$
3) $1.85,0.716$
A. Consistency of the process
B. Variability

Centring of the process
D. Proportion of defectives
118. The operating characteristic curve for an attribute sampling plan is a -

1) Graph of $A Q L$ against $R Q L$
Graph of fraction defective in a lot against the probability of acceptance
2) Graph of consumer's risk against the producer's risk
3) Graph of AOQ against the consumer's risk
119.

When the value of the population range R is not known, then for $\overline{\mathrm{x}}$ chart, the UCL and LCL with usual notations are-

A.	$\overline{\mathrm{x}}+\mathrm{A}_{3} \overline{\mathrm{~K}}, \overline{\mathrm{x}}-\mathrm{A}_{2} \overline{\mathrm{R}}$	
7.	$\overline{\bar{\Sigma}}+\mathrm{A}_{3} \overline{\mathrm{~T}}, \overline{\bar{\Sigma}}-\mathrm{A}_{3} \overline{\mathrm{R}}$	
c.	$\overline{\bar{\Sigma}}+A_{2} \overline{\bar{R}}, \overline{\bar{x}}-A_{3} \overline{\mathrm{R}}$	
D.	$\mathrm{A}_{3} \overline{\mathrm{R}}, \mathrm{A}_{2} \overline{\mathrm{R}}$ WWWW	

120. The upper control limit on P-chart is:
A. $n \overline{\mathrm{P}}+3 \sqrt{\mathrm{n} \overline{\mathrm{P}}(1-\overline{\mathrm{P}})}$
B. $\overline{\mathrm{P}}+\sqrt{\frac{\overline{\mathrm{P}}(1-\overline{\mathrm{P}})}{\mathrm{n}}}$
121. $\overline{\mathrm{P}}+3 \sqrt{\frac{\overline{\mathrm{P}}(1-\overline{\mathrm{P}})}{\mathrm{n}}}$
D. $n \overline{\mathrm{P}}+\sqrt{\mathrm{n} \overline{\mathrm{P}}(1-\overline{\mathrm{P}})}$
122. Quality control and reliability are-
1) Same
2) Quality control is checking the quality of the product and reliability is not
3) Reliability is checking the quality of the product but quality control is not

> Quality control is associated with relatively short period of time and reliability is associated with quality over long period of time but
122.

The maintenance action rate ' μ ' is given	
by-	
A.	MTTR
S.	$\frac{1}{\operatorname{NTTR}}$
C.	$\frac{1}{\text { MTBF }}$
D.	MTBF

123. The provision of stand-by or parallel components or assemblies to take over in the event of failure of the primary item is known as-
1) Derating
2) Availability
Redundancy
3) Longevity
 specified period of service of 10,000 hours is $\left(\mathrm{e}^{0.1}=1.1051\right)$:
90.489%
4) 9.483%
5) 0.9483%
6) 94.83%
125. | It is desired to have a reliability of atleast |
| :--- |
| 0.99 for a specified service period of 8000 |
| hours on the assumption of uniform failure |
| rate. The least value of θ that will yield |
| this reliability is |
| (Given that $\left.\log { }^{6 \times 55}=-001005\right)^{7}$ |
| ' |
126. When the failure rate is plotted against a continuous time scale, the resulting chart is called as-
Bathtub curve
2) OC curve
3) Reliability
4) Hazard rate
127. An equipment which works well and works whenever called upon to do the job for which it is designed is said to be-
1) Good
2) Best
Reliable
3) Effective
128. The rate at which failure will occur via certain interval of time $\left[t_{1}, t_{2}\right]$ is known as-
Failure rate
2) Hazard function
3) Hazard rate
4) Availability
129. An equipment is subjected to a maintenance time constraint of $\mathbf{3 0}$ minutes. If MTTR is $\mathbf{0 . 2 6 2}$ hours then the probability that it will meet the specification is (Given that $\mathrm{e}^{-1.9083}=0.14833$):
0.85167
2) 0.15
3) 0.75
4) 0.085
130. When the components of an assembly are connected in series, the reliability of the assembly is given by-
b) Sum of the reliabilities of individual components
2) Average of the reliabilities of individual components
3) Geometric mean of the reliabilities of individual components
Product of the reliabilities of individual components
131. A tool used for collecting the data consist of number of questions where in the respondent filled himself/herself is known as-

Questionnaire
3) Data entry sheet
2) Schedule
4) Mailed questionnaire
132. Increase in the sample size usually results in the decrease of-

1) Non-sampling error
2) Sampling error
3) Precision error
4) Measurable error
 is:
5) 25
6) 10
15
7) 35
134.

The variance of the sample mean in the case of SRSWOR is given by the formula-	
A.	$\frac{N n}{N} S^{2}$
B.	$\frac{N^{2}}{I-n^{2}} S^{12}$
C.	$\frac{N-n}{N n} S^{12}$
D.	$\frac{N}{n} S^{2}$

135. Which of the following statement is true?
1) Population mean increases with the increase in sample size
2) Population mean decreases with increase in sample size
136. In stratified random sampling, given the cost function $c=\alpha+\sum_{i=1}^{s} c_{i}, n_{n}$, then $V_{T} F_{s,}$, is minimum if the stratum size $n_{;}$is proportional to-
A. $n_{1} \alpha \frac{N_{2} S_{1}}{C_{1}}$

c.	$n_{1} \alpha \frac{N S_{1}}{\sqrt{C_{i}}}$
C.	$n_{1} \alpha N S_{1}$
D.	$n_{1} \alpha \frac{N S_{2}}{\sqrt{N}}$

137. The following relation must be satisfied in the case of lineartrend when compared with stratified, systematic and random sampling methods-

138. In simple random sampling without replacernent for larte n, an approximation to the variance of the ratio estimator is given by-

1	
B.	$V\left(\hat{R}_{1}=\frac{1-1}{n S^{2}} \sum_{i=1}^{s} r_{i}-R x_{i}=\right.$
C.	$V\left(\dot{R}_{j}=\frac{N}{\pi \mathbb{X}^{2}} \sum_{\mathrm{m}=1}^{>}\left(r_{1}-R x_{i}\right)^{2}\right.$
D.	$V\left(\hat{R}_{1}\right)=\frac{1-1}{n \mathbb{R}^{2}} \sum_{:=1}^{N} \frac{r_{3}-R x_{1}{ }^{2}}{N}$

139. Stratified sampling is not preferred when the population is:
1) Well defined
2) Heterogeneous
Homogeneous
3) Proportional to size

The relative bias of the ratio estimatorin the case of SRSWOR is given by-	
B.	
C.	
D	

14i. A systematic sample does not yield good results if-
Variation in units is periodic
2) Only requires large sample
3) Only requires small sample
4) Data are not easily accessible
142. A solution obtained by setting any n variables among $m+n$ variables equal to zero and solving for the remaining m variables is non-zero is called-

1) Optimum solution
2) Initial solution
3) Basic solution
4) Feasible solution
143. The main characteristics of the $L_{p p}$ is :
All the variables are non-negative
2) All the variables are negative
3) All the variables are constant
4) All the variables are linear
144. A feasible solution that minimises the total transportation cost is called-
Optimal solution
2) Unbounded solution
3) Bounded solution
4) Minimum feasible solution
145. An alternative optimal solution to a minimization transportation problem exists whenever opportunity cost corresponding $\mathrm{A} \mu \mathrm{avity}$ rbueor ramsporatimis:ater|alS. COn
1) Positive unit greater than one

Positive with atleast one equal to zero
3) Negative with atleast one equal to zero
4) Negative unit less than one
146. For the formulation of LP nodel, simplex method is terminated when all values-
$C_{j}-Z_{j} \leq 0$
2) $C_{j}-Z_{j} \geq 0$
3) $C_{j}-Z_{j}=0$
4) $Z_{j} \leq 0$
147. If dual has an unbouuded solution, primal has-

No feasible solution
3) Feasible solution
2) Unbounded solution
4) Optimal solution
148. When the sum of game of one player is equal to the sum of losses to another player in a game, this game is known as-

1) Balanced game
2) Unbalanced game
Zero-sum game
3) Fair game
149. If the unit cost rises, then the optimal order quantity-
1) Increase
-) Decrease
2) Either increase or decrease
3) Remains the same
150. Game which involving more than two players are called-
1) Conflicting games
2) Three person games

N -person games
4) Negotiable games
151. The expected waiting time of a customer in the queue in the case of $M / M / 1$ nodelis:

A.	$\frac{\lambda}{\mu} \cdot \frac{1}{\mu-\lambda}$
B.	$\frac{\lambda}{\mu}$
C.	$\frac{\lambda}{\mu-\lambda}$
D.	$\frac{\mu-\lambda}{\lambda \mu}$

152. An additive model of time series with the components T, S, C and R is:
1) $Y=T+S \times C+R$
2) $Y=T+S+C \times R$
3) $Y=T+S \times C \times R$
f) $\mathrm{Y}=\mathrm{T}+\mathrm{S}+\mathrm{C}+\mathrm{R}$
153. In ratio to trend method for seasonal indices, the indices become free from trend components of time series by-
1) Subtracting the trend line value for each corresponding value
2) Taking the ratio of each trend value to the
3) Taking the ratio of each seasonal value to the corresponding trend value
4) Adding the trend value for each cortesponding
154. The component of a time series which is attached to short-term variations is termed as-
1) Cyclic variation
2) Secular trend
3) Irregular variation
4) Seasonal variation
155. The moving average in a time series are free from the influence of-
1) Seasonal and cyclic variations
2) Trend and cyclical variations
3) Trend and random variations
156. Value of \mathbf{b} in the trend line $Y=a+b X$ is:
1) Always positive
2) Always negative
Either positive or negative
3) Zero
) Seasonal and irregular variations
157. For the equation $\mathrm{Y}=148.8+7.2 \mathrm{X}$, the quarterly trend is:
1) $Y=12.4+1.8 \mathrm{X}$
2) $\mathrm{Y}=37.2+0.15 \mathrm{X}$
3) $\mathrm{Y}=37.2+0.2 \mathrm{X}$
4) $\mathrm{Y}=32.4+0.2 \mathrm{X}$
158. A polynomial representing a trend equation of the type $Y=a+b X+c X^{2}$ is called a-
Parabola
2) Straight line
3) Trend line
4) Non-linear curve
159. A gycle in a time series is represented by the difference between-

W Two successive peaks
2) The end points of a convex portion
3) The mid-points of a trough and the crest
4) Trend values
160. The equation $Y=a+b X+c X^{2}+d X^{3}$ represents-

1) Hyperbola
2) Cardioid
Cubic parabola
3) Compertz curve
161. A trend is linear if-
Growth or decay time rate is consistent
2) Growth or decay follow geometric law
3) Change is constant
4) Growth rate is exponential
162. Suppose the price of a commodity is Rs. 20 in 2010 and Rs. 30 in 2015. Then the price relative is:
1) 1.5
2) 0.667
63. The formula for calculating weighted aggregate price index is:

A.	$\frac{\Sigma_{p_{1} q_{1}}}{\Sigma_{P_{2} q_{c}}} \times 100$
7	$\begin{aligned} & \Sigma_{p: q} \\ & \Sigma_{p_{c}} q_{s} \end{aligned}$
C.	$\frac{\Sigma_{\mathrm{Pc}} q_{c}}{\Sigma_{P_{i} q_{0}}} \times 100$
D.	$\frac{\Sigma p_{0} q_{0}}{\Sigma p_{1} q_{1}} \times 100$

Fishers ideal index
3) Marshall and Edgeworth index
165.

Marshall-Edgeworth index numberis:	
L.	$\frac{\sum p_{1}\left(q_{t}+q_{1}\right)}{\sum p_{0}\left(q_{i}+q_{1}\right)} \times 100$
B.	$\frac{\sum p_{0}\left(q_{0}+q_{1}\right)}{\sum p_{1}\left(q_{0}+q_{i}\right)} \times 100$
C.	$\frac{\sum p_{0}}{\sum p_{1}} \times 100$
D.	$\frac{\sum\left(q_{0}-q_{i}\right)}{\sum\left(p_{c}-p_{i}\right)} \times 100$

166. The most suitable average for index numbers is:
1) Mean
2) Harmonic mean
3) Median

4 Geometric mean
167. The formula for factor reversal test is:
) $P_{01} \times Q_{01}=V_{01}$
2) $P_{01} \times P_{10}=1$
3) $P_{01} \times V_{01}=Q_{01}$
4) $Q_{01} \times V_{01}=P_{01}$
168.

Under aggregate expenditure method, the formula for the cost of living index number is: is	$\frac{\sum_{P_{1} q_{0}}}{\sum_{P_{0} q_{0}}} \times 100$
B.	$\frac{\sum_{p_{0} q_{0}}}{\sum_{p_{1} q_{0}}} \times 100$
C.	$\frac{\sum_{p_{1} q_{1}}}{\sum_{P_{0} q_{0}}} \times 100$
D.	$\frac{\sum_{P_{0} q_{1}}}{\sum_{P_{1} q_{1}}} \times 100$

169.

Chain Base Index is equal to-

A.	$\frac{\text { Current year link relative } \times \text { Previous year link relative }}{100}$
B.	Current yearlinkrelative \times Previous yearlink relative
C.	$\frac{\text { Current year inkralive }}{100}$
D.	$\frac{\text { Previous yearlink relative }}{100}$

170. Link relative for current year is equal to-

A.	$\frac{\text { Price relative for the previous year }}{\text { Price relative for the current year }}$
P.	$\frac{\text { Price relative for the current year }}{\text { Price relative for the previous year }}$
C.	Price relative for the current year
D.	Price relative for the previous year

The forinula for calculating quantity index	
number using simple aggregative method	
is:	
A.	$\frac{\sum q_{0}}{\Sigma q_{i}} \times 100$
.	$\frac{\sum q_{1}}{\Sigma q_{0}} \times 100$
C.	$\frac{q_{0}}{q_{2}} \times 100$
D.	$\frac{q_{1}}{q_{0}} \times 100$

172. For a split plot experiment conducted with 5 concentrations of an insecticide in main plots and 4 varicties of gram in sub-plots and have 3 replications, main plot error degrees of freedom is:
8
2) 10
3) 24
4) 6
173. A contrast constructed while interpreting the results will be categorised as-
Posteriori contrast
2) Planned contrast
3) A priori contrast
4) Orthogonal contrast
174.

In a linearregression model. $\operatorname{Var}\left[\hat{\beta}_{1}-\hat{\beta}_{2}\right]$ is:

A.	$\operatorname{Var}\left(\hat{\beta}_{1}\right)+\operatorname{Var}\left(\hat{\beta}_{2}\right)$
B.	$\operatorname{Var}\left(\hat{\beta}_{1}\right)-\operatorname{Var}\left(\dot{\beta}_{2}\right)$
C.	$\operatorname{Var}\left(\hat{\beta}_{1}\right)+\operatorname{Var}\left(\beta_{2}\right)+2 \operatorname{cov}\left(\hat{\beta}_{1}, \beta_{2}\right)$
D.	$\operatorname{Var}\left(\hat{\beta}_{1}\right)+\operatorname{Var}\left(\hat{\beta}_{2}\right)-2 \operatorname{cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$

175. To test the overall significance of the multiple linear regression model with R independent variables, we use-
A. $\mathrm{F}=\frac{\text { SScueto Residual }}{\text { Total sum of squares }}$
B. $F=\frac{5 S \text { che to Regression }}{\text { Total sumof squares }}$
c) $F=\frac{R^{2} /(R-1)}{\left(1-R^{2}\right) /(n-R-1)}$
D. $F=\frac{R^{2}}{1-R^{2}} \frac{n-R}{R}$
176. To detect the auto correlation in a multiple regression model, we use-
1) Chows test
Durbin - Watson test
2) Sign test
3) Run test
177. To find whether a particular variable can be included in the model, we use-
1) R^{2}
2) Comparing the mean values

Adjusted R^{2}
4) Comparing the standard deviations of the variables
178. Choose the correct answer from the following options for regression model.

1) $-1 \leq R^{2} \leq 1$
2) $R^{2} \leq \operatorname{Adj} R^{2}$
3) Adj $R^{2} \geq 1$
Adj $R^{2} \leq R^{2}$
179.

In the regression model	
$Y=X \beta+\epsilon$, if $V(\epsilon)=\sigma^{2} \mathrm{~V}, \mathrm{~V}$ is a known $\mathrm{n} \times \mathrm{n}$	
matrix then the generalized least squares	
estimator of β is:	
A.	$\left(\mathrm{X}^{1} \mathrm{X}\right)^{-1}\left(\mathrm{X}^{1} \mathrm{Y}\right)$
B.	$\left(\mathrm{X}^{1} \mathrm{X}\right)^{-1} \mathrm{~V}\left(\mathrm{X}^{1} \mathrm{Y}\right)$
C	$\left(\mathrm{X}^{1} \mathrm{~V}^{-1} \mathrm{X}\right)^{-1} \mathrm{X}^{1} \mathrm{~V}^{-1} \mathrm{Y}$
D.	$\left(\mathrm{X}^{1} \mathrm{X}\right)^{-1} \mathrm{~V}^{-1}\left(\mathrm{X}^{1} \mathrm{Y}\right)$

180. If X_{n} is the total number of sixes anpearing in the first n throws or a die, the state space is:
1) Markov chain
2) Continuous
Discrete
3) Bernoulli trials
181.

	probability that starting with state j system will ever reach state k is oted by-
A.	$\mathrm{F}_{\mathrm{b}}=\sum_{\mathrm{j}=1}^{\mathrm{x}=\mathrm{f}_{1}^{(m)}}$
B.	
1	
D.	$F_{1 k}=\sum_{x=1}^{x} f_{1}^{46}$

182. Given the Markov chain with states $0,1,2$ and the transition probability matrix

183. The set of possible values of a single random variable X_{n} of a stochastic process $\left\{X_{n}, n \geq 1\right\}$ is known as-
State space
2) Sample space
3) Venn diagram
4) Random space
184. If for all $t_{1}, t_{2}, \ldots t_{n}, t_{1}<t_{2}<\ldots<t_{n}$, the random variables $X\left(t_{2}\right)-X\left(t_{1}\right), X\left(t_{3}\right)-X\left(t_{2}\right), \ldots X\left(t_{n}\right)-X\left(t_{n-1}\right)$ are independent, then $\{\mathbf{X}(t), t \in T\}$ is called as-
1) Processes with difference
2) Processes with dependent increments

Processes with independent increments
4) Processes with unequal increments
185.

The m-step transition probability matrix is	
denoted by-	

186. The interarrival times of a Poisson process are identically and independently distributed random variables which follow-

The negative exponential law with mean $1 / \lambda$
3) The uniform distribution
2) The binomial distribution
4) The weibull distribution
187. If the chain does not contain any other proper closed subset other than the state space, then the chain is called-

1) Reducible
C) Irreducible
2) Primitive
3) Inprimitive
188. A relation between $f_{\mid k}^{(n)}$ and $p_{j k}^{(n)}$ is:

A.	$p_{k}^{(n)}=\sum_{x=0}^{n} f_{i x}^{(x)} p_{u x}^{(n)}$
B.	$p_{i k}^{(n)}=\sum_{r=0}^{n} f_{k}^{(n)} p_{k u}^{(n-x)}$
C.	$p_{k}^{(n)}=\sum_{x=0}^{n} f_{k y}^{(n-1)} p_{k x}^{(n-1)}$
D.	$p_{i k}^{(n)}=\sum_{x=0}^{n} f_{k}^{(x)} p_{k x}^{(n-x)}$

189. The mean recurrence time for the state j is:

A.	$\mu_{n 1}=\sum_{\mathrm{z} \pm 1}^{\infty} n f_{k i}^{(\mathrm{n})}$
B.	$\mu_{\pi}=\sum_{n=1}^{\infty} f_{1 n}^{(n)}$
g	$\mu_{\mathrm{i}}=\sum_{\mathrm{n}=1}^{\infty} \mathrm{nf} f_{\mathrm{i}}^{(n)}$
D.	$\mu_{11}=\sum_{n=1}^{\infty} f_{i n}^{(n)}$

190. A persistent state j is said to be nuil persistentif-
A. $\mu_{\mathrm{ij}}=1$
B. $\mu_{11}=-\infty$
191. $\mu_{i j}=\infty$
D. $\mu_{\mathrm{ij}}=-1$
192. If $\mathrm{v}_{\mathrm{k}}=\sum_{i} \mathrm{v}_{\mathrm{i}} \mathrm{p}_{\mathrm{ik}}$ such that $\mathrm{v}_{\mathrm{i}} \geq 0, \sum_{i} \mathrm{v}_{\mathrm{j}}=1$. then the probability distribution $\left\{\mathrm{v}_{\mathrm{i}}\right\}$ is called:

A.	Stationary
B.	Ergodic
C.	Persistent
D.	Transient

192. Social mobility implies-

Movements of individuals from one states to another
3) Movements of people from one states to another
2) Movements of individuals from one village to another
4) Movements of people from one country to another
193. While describing, comparing and explaining the determinals and consequences of population phenomena \qquad have to be taken into consideration.

1) Economic phenomena
2) Social phenomena
3) Biological phenomena
4) Environmental phenomena
194. The first Indian population conference was held in \qquad under the auspices of the university of Lucknow.
1936
2) 1937
3) 1938
4) 1939
195. The Indian Association for the Study of Population (LASP) regularly publishes a journal known as-
1) Indian Economy
Demography India
2) Social change
3) Economic change
196. The data required for the study of population are obtained from:
1) Population census
2) Registration of vital events
3) Sample surveys
All of these
197.

198.

Infant mortality rate is given by•	
A	$\frac{\text { Total no.of deaths below ageone }}{\text { No.of births regrstered }} \times 1000$
B.	$\frac{\text { Total no.oi deaths belowage one }}{\text { No.of deaths registered }}$
C.	$\frac{\text { Total no. of buth regrstered }}{\text { Total no.of deaths belowage one }} \times 100$
D.	Total no.of deaths registered
Total no.of buths	

199. The neo-natal mortality is the period:

Wherein death occurred before completing four weeks of life
3) Wherein death occurred before completing one year
2) Wherein death occurred between 28 days and 365 days
4) Wherein death occurred after one year
200. One who has not had a single child is regarded as:

1) Fertile
2) Fecundity
3) Sterile
4) Involuntary Sterile
