EXAM CODE	: MA13_	542012
POST · STATIS	TICAL	OMPHER

- The region of feasible solutions has an important property called -
 - A. The concave property
 - B. The convex property
 - C. The bounded property
 - D. The shaded property
- Which is FALSE?
 - A. $\frac{1}{r} = \cos\theta + 2\sin\theta + 3 \text{ represents a}$ conic www.upscstudymaterials.com
 - B. $\frac{1}{r} = 4$ represents a circle
 - C. $\frac{1}{r} = 2\cos\theta + 3\sin\theta \text{ represents a}$ straight line
 - $\frac{l}{r} = 1 + \cos\theta$ in an ellipse

The pedal equation of the parabola 3 $\frac{2a}{}$ = 1 - cos θ with respect to the focus as pole, is:

$$\chi p^2 = ar$$

$$p^{2} = ar$$

$$B. \quad r^{2} = \frac{p^{2}}{2a}$$

C.
$$r = p$$

D.
$$r^2 = ap$$

- Which of the statement is materials.com
 - A unit in a ring cannot be a zero divisor
 - A commutative ring with unit В. element without zero divisors is an integral domain
 - C. A Euclidean ring has a unit element
 - D. All of these are true

A particle is moving in a straight line with uniform acceleration. If its velocity at any two points are u,v then its velocity at the midpoint will be -

$$\cancel{\lambda} \cdot \sqrt{\frac{\left(u^2 + v^2\right)}{2}}$$

$$B. \quad \sqrt{\frac{\left(u^2 + v^2\right)}{3}}$$

$$C. \quad \sqrt{2(u^2 + v^2)}$$

$$D. \quad \sqrt{\frac{\left(u^2-v^2\right)}{2}}$$

6 A particly is yuroispedstudy greaterials.com

 $g = 9.81 \text{ m/sec}^2$ with velocity 29.43 m/sec at an elevation 30°. The time of flight is :

- A. 15
- B. 2
- C. 4
- **D**. 3

A billiard ball collides directly with another ball of same mass in rest.

If "e" is coefficient of restitution, then ratio of velocities after impact -

C.
$$\frac{e}{2}:\frac{2}{e}$$

D.
$$\frac{e}{1+e}$$
: $\frac{e}{1-e}$

- A particle waves pistes tund formatier las. com then the acceleration of the particle is:
 - A. Uniform
 - B. Positive
 - C. Negative
 - Ø. Zero

The moment of inertia of a thin uniform rod of length 2a and mass M about the line through one end of the rod of perpendicular to the rod is:

$$\cancel{A} \quad \frac{M(2a)^2}{3}$$

B.
$$\frac{2}{3}M^2a$$

C.
$$\frac{2}{3}$$
Ma²

D.
$$\frac{2}{3}$$
Ma

A ball falls from pseight dy mane fials.com horizontal plane with coefficient of restitution "e". The whole distance covered by the ball before it comes to rest

$$(1+e^2)$$
 h $(1-e^2)$

is:

B.
$$\frac{(1-e^2)}{(1+e^2)h}$$

C.
$$\frac{(1+e^2)}{(1-e^2)h}$$

$$D. \quad \left(\frac{1-e^2}{1+e^2}\right) h$$

A cyclist describes a circular path with velocity 21 kmph. The radius of the path so that the cyclist does not slip should be greater than:

(when μ = coefficient of friction = 25/36)

- A. 2.1
- B. 3
- C. 6

p. 5

Two particles of mass 10 kg and 15 kg are dropped Wolnes Cest How mathers.com respectively. The ratio of their time to reach the ground is:

X. 1:2

B. 2:1

C. 4:1

D. 1:4

A square lamina of diagonal "l" and mass "M" has moment of inertia about its diagonal as -

$$\cancel{\lambda}$$
. $\frac{\mathrm{Ml}^2}{24}$

B.
$$\frac{M l^2}{3}$$

C.
$$\frac{Ml^2}{8}$$

$$D. \quad \frac{Ml^2}{2}$$

The displacement equation of a particle is given www. Lupscstudy materials.com where a. b, ω are constants. The path is:

- A. Rectilinear
- B. Simple harmonic
- C. Elliptic
- D. Circular

A ball of mass 2 kg impinges directly on a ball of mass 1 kg which is at rest. The velocity of the former before impact is equal to the velocity of the later after impact. The coefficient of restitution "e" is:

A. 1/4

B. 1

C. 1/2

D. 1/3

A particle is projected with the velocity
49 m/sec at an elevation 30°. The
greatest/haighttattameduclymaterials.com
[where g = 9.8 m/sec² gravitational force]

$$\cancel{A}. \quad \frac{25g}{8}$$

B. 30g

C. 4.9g

D. $\frac{8g}{25}$

17	The moment of inertia of a right angled
	isosceles triangle about the hypotenuse
	of length "a" is :
	$\frac{Ma^2}{24}$
	$B. \frac{4Ma^2}{3}$
	C. $\frac{2Ma^2}{3}$
	D. $\frac{M^2a}{24}$
18	The radius of curvature at the lowest www.upscstudymaterials.com
	point of the catenary $y = c \cosh\left(\frac{x}{c}\right)$: is
	Ж. с
	B. 0
	C. ∞

D. 1

The evolute of the cycloid is:

- A. Another cycloid
- Parabola В.
- C. Ellipse
- Hyperbola D.

20 Radius of curvature for the cardioid

 $r = a(1 + \cos\theta)$ is:

- B. $\frac{1}{3}\sqrt{3}ar$ www.upscstudymaterials.com

 C. $\frac{1}{3}\sqrt{2}ar$

21	
21	The points on the parabola $y^2 = 4x$ at
	which the radius of curvature is $\pm\sqrt{2}$,
	are –
	A. $(1, 1)$ and $(2, 2)$
	B. (1, 2) and (1, -2)
	C. $(2, 1)$ and $(2, 2\sqrt{2})$
	D. $(3, \sqrt{12})$ and $(3, -\sqrt{12})$
22	$\frac{l}{r} = 1 + \cos\theta$, where $e > 1$, is equation
	r
	of —
	www.upscstudymaterials.com
	A. Ellipse
	B. Parabola
	Z. Hyperbola
	D. None of these
23	The equation of asymptote of
	$x^3 + y^3 = 3axy$, is:
	A. x + y - a = 0
	B. x - y + a = 0
	X + y + a = 0
	D. x - y - a = 0

24 The l.p.p.

 $Max z = 3x_1 + 4x_2$

Subject to

$$x_1 - x_2 \le -1$$

$$-x_1 + x_2 \le 0,$$

 $x_1, x_2 \ge 0$ has:

- A. Feasible solution
- B. Unique solution
- 2. Infeasible solution
- D. Unbounded solution
- When the basis matrix is not an identity www.upscstudymaterials.com matrix for an l.p.p, we introduce a new type of variable called the -
 - A. Slack variable
 - B. Surplus variable
 - 🧷 Artificial variable
 - D. Dummy variable

_	
26	In a simplex table of a l.p.p. alternative
	optimal solutions exist if —
	A. All basic Δ_{j} are zero
	B. At least one $\Delta_{\mathfrak{z}}$ is negative
	C. All $\Delta_{\rm j}$ are zero or negative
	\mathcal{D} . Any non-basic Δ_{j} is also zero
27	heta=etarepresents the polar equation of –
	A. A constant angle
	B. Circle
	C. Conic www.upscstudymaterials.com
İ	B. Straight line
28	The polar equation of circle with centre
	$\left(4,\frac{\pi}{4}\right)$ and radius 2 is:
	A. $r^2 - 8\cos(\theta + \frac{\pi}{4}) + 12 = 0$
	B. $r^2 + 8\cos(\theta - \frac{\pi}{4}) + 12 = 0$
	$e^{r^2} - 8\cos\left(\theta - \frac{\pi}{4}\right) + 12 = 0$
	D. $r^2 - 8\cos(\theta - \frac{\pi}{4}) - 12 = 0$

What is the equation of the conic (in polar) if S (focus) is taken as pole and OX' (negative direction of the axis) is taken as initial line?

A.
$$\frac{1}{r} = A\cos\theta + B\sin\theta$$

$$E = 1 + e \cos \theta$$

C.
$$r = 2\cos\theta$$

D. None of these

- The lines $r(\cos\theta + \sin\theta) = \pm 1$ and $r(\cos\theta \sin\theta) = \pm 1$ and $r(\cos\theta \sin\theta) = \pm 1$ enclose a:
 - A. Square
 - B. Rhombus
 - C. Rectangle
 - D. Quadrilateral

- The envelope of a system of concentric ellipses with their axes along the coordinate axes and of constant area is:
 - A. Parabola
 - B. Ellipse
 - C. Astroid
 - Ø. Rectangular Hyperbola (RH)
- The equation of the tangent to the circle $r = 10 \cos\theta$ at $\theta = \pi/4$ is:
 - A. $r \sin\theta = 1$
 - B. $r \sin\theta = 10$

 - D. $r \sin\theta = 2$
- Which pair of straight lines are parallel?
 - A. $\cos\theta + \sin\theta = \frac{1}{r} \cdot \cos\theta \sin\theta = \frac{1}{r}$
 - B. $\cos\theta + \sin\theta = \frac{\sqrt{2}}{r}, \cos\theta + \sin\theta = \frac{10\sqrt{2}}{r}$
 - C. $2\cos\theta + \sin\theta = \frac{2}{r}, \cos\theta + 2\sin\theta = \frac{2}{r}$
 - D. $2\cos\theta + \sin\theta = \frac{2}{r}$, $2\cos\theta \sin\theta = \frac{2}{r}$

Which is TRUE?

The equations

$$\frac{l}{l} = 1 - e \cos\theta \text{ and } \frac{l}{l} = -1 - e \cos\theta$$

represent the same conic.

 $r = 10\cos\theta$ represents a straight

B. line

C. $r \sin \theta = 10$ represents a circle

D. r = 5 represents a straight line

The directrix of the conic $\frac{l}{r} = 1 + e \cos \theta$

is:

www.upscstudymaterials.com

$$\chi = e \cos\theta$$

B.
$$\frac{1}{r} = -e \cos\theta$$

C.
$$\frac{l}{r} = \sin\theta$$

D.
$$\frac{l}{r} = -\sin\theta$$

The envelope of circles whose centres lie on the parabola y²=4ax and which passes through its vertex is:

$$x^3 + y^2(x + 2a) = 0$$

B.
$$y^3 + x^2(y + 2a) = 0$$

C.
$$x^3 + y^2(x - 2a) = 0$$

D.
$$y^3 + x^2(y - 2a) = 0$$

Partial differential equation obtained by eliminating a and b from $az + b = a^2 x + y$ is:

A.
$$\left(\frac{\partial z}{\partial x}\right) \cdot \left(\frac{\partial z}{\partial y}\right) = -1$$

$$\mathcal{B}. \quad \left(\frac{\partial z}{\partial x}\right) \cdot \left(\frac{\partial z}{\partial y}\right) = 1$$

C.
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y}$$

$$D. \quad \frac{\partial z}{\partial x} = -\frac{\partial z}{\partial y}$$

General solution of

$$x^{2} \frac{d^{2}y}{dx^{2}} - 3x \frac{dy}{dx} + 4y = 0$$
 is:

A.
$$(c_1 + c_2 x) e^{2x}$$

B.
$$c_1 \cdot e^{2x} + c_2 \cdot e^{-2x}$$

$$c_{1} = (c_{1} + c_{2} \log x) \cdot x^{2}$$

D.
$$(c_1 + c_2 \log x) \cdot \frac{1}{x^2}$$

Particular integral of

$$(D^2 + D)y = x^2 + 2x + 4$$
, where

$$(D^2 + D)y = x^2 + 2x + 4$$
, where $D = \frac{d \text{ www.upscstudymaterials.com}}{dx}$, is:

A.
$$x^2 + 4$$

B.
$$\frac{x^3}{4} + 4x$$

C.
$$\frac{x^2}{2} + 4$$

$$C. \qquad \frac{x^2}{2} + 4$$

$$D = \frac{x^3}{3} + 4x$$

Particular integral of the differential equation
$$(4D^2 - 12D + 9)y = 144e^{\frac{3x}{2}}$$
 where

$$D \equiv \frac{\partial}{\partial x}$$
 is:

$$A. 18x^2 e^{\frac{3x}{2}}$$

B.
$$18x^2 e^{-\frac{3x}{2}}$$

C.
$$36x^2 e^{\frac{3x}{2}}$$

D.
$$36x^2 e^{-\frac{3x}{2}}$$

The necessary and sufficient condition for the integrability of total differential equation Poly total differential.com

A.
$$P\left(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}\right) - Q\left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}\right) + R\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = 0$$

$$P\left(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}\right) + Q\left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}\right) + R\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = 0$$

C.
$$P\left(\frac{\partial Q}{\partial z} + \frac{\partial R}{\partial y}\right) - Q\left(\frac{\partial R}{\partial x} + \frac{\partial P}{\partial z}\right) - R\left(\frac{\partial P}{\partial y} + \frac{\partial Q}{\partial x}\right) = 0$$

$$D = P\left(\frac{\partial Q}{\partial z} + \frac{\partial R}{\partial y}\right) - Q\left(\frac{\partial Q}{\partial z} + \frac{\partial R}{\partial y}\right) + R\left(\frac{\partial P}{\partial y} + \frac{\partial Q}{\partial x}\right) = 0$$

$$\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^2 - \mathrm{ax}^3 = 0 \text{ are } :$$

$$(y + c) = \pm 2 a^{\frac{1}{2}} x^{\frac{5}{2}}$$

B.
$$2(y+c) = \pm 5 a^{\frac{1}{2}} x^{\frac{3}{2}}$$

C.
$$2(x + c) = \pm 5 a^{-\frac{1}{2}} y^{\frac{5}{2}}$$

D.
$$y + c = \pm \frac{5\sqrt{a}}{y^{\frac{5}{2}}}$$

A.
$$\frac{3s + 24}{s^2 + 4s + 40}$$

$$B. \frac{3s - 24}{s^2 + 4s + 40}$$

C.
$$\frac{3s+12}{s^2+2s+20}$$

D.
$$\frac{3s-12}{s^2-4s+20}$$

44 The slope at any point of a curve

$$y = f(x)$$
 is given by $\frac{dy}{dx} = 3x^2$ and it

passes through (-1,1). The equation of the curve is:

$$x = x^3 + 2$$

B.
$$y = -x^3 - 2$$

C.
$$y = x^3$$

D.
$$y = -x^3 + 2$$

The order of the differential equation

$$\sqrt{1 + \left(\frac{d\mathbf{W}}{dx}\right)^2} \mathbf{w} \cdot \mathbf{d}^2 \mathbf{p} \mathbf{s} \mathbf{c} \mathbf{s} \mathbf{t} \mathbf{u} \mathbf{d} \mathbf{y} \mathbf{m} \mathbf{a} \mathbf{t} \mathbf{e} \mathbf{r} \mathbf{i} \mathbf{a} \mathbf{l} \mathbf{s} \mathbf{.com}$$

A.
$$\frac{1}{2}$$

46 If the first quartile is 104 and quartile deviation is 18, find the third quartile.

- 138 Α.
- В. 132
- C. 140
- 142 D.

47 The solution to the differential equation yz dx + zx dy + xy dz = 0

$$X$$
. $xyz = c$

- B. yz + xz + xy = c www.upscstudymaterials.com C. x + y + z = c
- D. $x^2 + y^2 + z^2 = c$

- The particle integral of differential equation $(D^2 + a^2)y = \cos ax$
 - A. $\frac{x}{2a}\cos ax$
 - $B. \frac{x}{2a} \sin ax$
 - C. $\frac{1}{2a} \sin ax$
 - D. $\frac{-1}{2a}\cos ax$
- The complimentary function of

$$(x^2D^2 - 3xD - 5)$$

- A. $Ae^{5x} + Bx^{-1}$
- B. $\frac{A}{x^5} + Bx$ $Ax^5 + \frac{B}{x}$
- D. $A\cos 5x + B\sin x$

$$\left(D^2 + 4\right)y = \sin 2x$$

$$A \cos 2x + B \sin 2x$$

B.
$$Ae^{-2x}+Be^{2x}$$

C.
$$e^{-x}(A \sin 4x + B \sin 4x)$$

D.
$$e^{-2x}(A \sin 2x + B \sin 2x)$$

The partial differential equation by eliminating a, b of
$$Z = ax^3 + by^3$$
 is:

A.
$$px + qy = z$$

B.
$$px^3 + 9y^3 = z$$

D.
$$p^3x + q^3y = z$$

$$A. \frac{1}{2} \left[\frac{7}{s^2 + 49} - \frac{1}{s^2 + 1} \right]$$

B.
$$\frac{1}{2} \left[\frac{7}{s^2 + 49} + \frac{1}{s^2 + 1} \right]$$

C.
$$\frac{1}{2} \left[\frac{s}{s^2 + 7} - \frac{s}{s^2 + 1} \right]$$

D.
$$\frac{1}{2} \left[\frac{s}{s^2 + 49} - \frac{s}{s^2 + 1} \right]$$

The inverse Laplace of $\left(\frac{1}{s^2}\right)$ is:

The value of $L^{-1}\left(\frac{2s}{s^2+4}\right)$ is:

A. $\frac{1}{2} t \sin 2t$ www.upscstudymaterials.com

B. $\frac{1}{4} t^2 \sin t$

- C. $\frac{-1}{2} t \sin 2t$ D. $\frac{-t^2}{4} \sin t$

⁵⁵ The differential equation

 $x dy - y dx = 2x^3 dx$ has the solution :

 $A, \quad x^2 + y = Cx^3$

B.
$$-x^3 + y = Cx$$

 $C. \quad x^3 + y = Cx$

$$D. -x^2 + y = C$$

The Laplace transform L(te^t) is:

$$\cancel{A}. \quad \frac{1}{(s-1)^2}$$

B. $\frac{-1}{(s-1)}$ www.upscstudymaterials.com

$$C. \quad \frac{1}{(s+1)^2}$$

D. $\frac{1}{s^2}$

57	Which of the following is NOT a general
	method for solving operations research
	models?
	A. Analytic method
	B. Iterative method
	C. Probabilistic method
	D. The Monte-Carlo method
58	The simple method of linear
	programming was developed by -
	A. George B. Dantzig
	B. Cantor
	B. Cantor www.upscstudymaterials.com C. George Boole
	D. Jhonson
59	Which one of the following type does
	NOT form the part of constraints in
	1.p.p?
	A. Less than or equal to
	B. Not equal to
	C. Greater than or equal to
	D. Equal to

60	Equation $r = a$ represents the polar
	equation of –

- A. Straight line
- Circle
- C. Cone
- D. Cylinder
- The angle of intersection of the curves $r = \sin\theta + \cos\theta$ and $r = 2\sin\theta$ is:

 $\frac{3\pi}{4}$ www.upscstudymaterials.com В.

The number of factors of the number 62 2025 is:

- A. 25
- В. 81
- C. 8
- 15

 $\frac{1^{2}.2}{\boxed{1}} + \frac{2^{2}.3}{\boxed{2}} + \frac{3^{2}.4}{\boxed{3}} + \frac{4^{2}.5}{\boxed{4}} + ..x$

The sum of the above series is:

- A. 5e
- В. Зе
- Q. 76
- D. 2e

Fermat's theorem states "If P is prime and a is any number prime to P then N is divisible by P". What is N?

- A. a^{P+1}-1 www.upscstudymaterials.com
- B. a^P-1
- C. $a^{P-1}+1$
- D. a^{P-1}-1

The sum of all divisors of 480 is:

- A. 706
- **B**. 1412
- C. 252
- D. 398

 $\lim_{x \to a} \left(2 - \frac{x}{a}\right)^{\tan\left(\frac{\pi x}{2a}\right)} =$

- A. $e^{2\pi}$
- B. e¹
- C. $\frac{\pi}{2}$
- $D. e^{2/\pi}$

 $\sqrt{\frac{1-\log b}{1+\log b}}$ w.upscstudymaterials.com

- B. log b
- C. $\frac{1}{\text{logb}}$
- $D. \quad \frac{1 + \log b}{1 \log b}$

$$2\left[1+\frac{\left(\log e^n\right)^2}{2}+\frac{\left(\log e^n\right)^4}{4}+\ldots\infty\right]=?$$

A.
$$n^2 + 1$$

A.
$$n^2 + 1$$

B. $n + 1/n$

C. $n^2 - 1$

C.
$$n^2 - 1$$

D.
$$n - 1/n$$

If
$$\left| \frac{1}{2n+1} \right| < 1$$
 then

$$2\left[\frac{1}{(2n+1)} + \frac{1}{3(2n+1)^3} + \frac{1}{5(2n+1)^5} + \dots\right] =$$

A.
$$\log\left(\frac{n}{n+1}\right)$$

$$\mathbb{E}. \quad \log\left(\frac{n+1}{n}\right)$$

$$C. \quad \log\left(\frac{2n+1}{n}\right)$$

$$D. \quad \log \left(\frac{n}{2n+1} \right)$$

$$\underset{x \to 0}{\text{Lt}} \frac{e^{ax} - e^{bx}}{x} =$$

- A. ев –ев
- В. еа-ь
- C. e^{b-a}
- \mathcal{D} . (a b)

The numbers 496 is:

- A. Fibonacci number
- B. Fermat number

g. Perfect Manual Pe

D. Prime number

72

The sum of the series using Binomial theorem $1 + \frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} + \dots$ is:

A.
$$\sqrt{2} + 1$$

B.
$$\sqrt{2} - 1$$

C.
$$2\sqrt{2} - 1$$

73 The sum of the series to ∞

$$\frac{1}{1} + \frac{1+2}{2} + \frac{1+2+3}{3} + \dots + \infty$$
 is:

- A. e/2
- В. е

$$\cancel{\mathcal{L}}$$
. $\frac{3}{2}e$

D. 2 e

74 When |x| < 1 and if

$$f = \frac{x}{1 + x} + \frac{1}{2} \left(\frac{x}{1 + x} \right)^{3} + \frac{1}{2} \left(\frac{x}{1 + x} \right)^{5} + \frac{1}{2} \left($$

$$then \frac{1}{2} \log \left(\frac{1+x+x^2}{1-x+x^2} \right) = \dots$$

A 9f

C.
$$f^2$$

The sum of the series

$$\left(\frac{a-b}{a}\right) + \frac{1}{2}\left(\frac{a-b}{a}\right)^2 + \frac{1}{3}\left(\frac{a-b}{a}\right)^3 + \dots$$

will be equal to:

- A. loge ab
- B. $log_e(b \mid a)$
- $\not \in log_e(a \mid b)$
- D. log_e a^b

If $Y = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \infty$ and |x| < 1 then

$$y + \frac{y^2}{12} + \frac{y^3}{13} + \frac{y^4}{14} + \dots \infty is$$
:

- $C. \log_e (1+y)$
- D. $\log_e(1-y)$

77 The equation

 $x^{2} + y^{2} + z^{2} + 2ux + 2vy + 2wz + d = 0$

represents a sphere iff $u^2 + v^2 + w^2 - dis$:

- A. Zero or negative
- B. Negative
- C. Zero
- D.

Positive

The radius of circle in which the sphere $x^2 + y^2 + z^2 + 2x - 2y - 4z - 19 = 0$ is cut

x + y + z + 2x - 2y - 4z - 19 = 0 is cu

by the plane x + 2y + 2z + 7 = 0 is:

www.upscstudymaterials.com

- A. 4
- B. 1
- C. 2

D. 3

79	The shortest distance from the plane
	$12 \times 4y + 3z = 327$ to the sphere
	$(x^2 + y^2 + z^2 + 4x - 2y - 6z = 155 \text{ is:}$
	A. 39
	B. 26
	C. $41\frac{4}{13}$
	D. 13
80	$\int_{-\pi}^{\pi} \int_{0}^{2} r \sin \theta dr d\theta = ?$
	A. 0
	- www.upccctudymatarialc.com
	B. π www.upscstudymaterials.com
	$C\pi$
	D. 2
81	If $y = e^{\tan^{-1}x}$ then $(1 + x^2)y_2 + 2xy_1 = ?$
	A. y
}	
	\mathcal{B} . \mathcal{Y}_1
	C. y ²
	D^{-} γj_{s}^{-1}

The area bounded by one arch of the cycloid $x = a(\theta - \sin \theta)$ $y = a(1 - \cos \theta)$ and the x-axis is:

A. $3\pi a^2$ B. $4\pi a^2$ C. πa^2 D. $2\pi a^2$ The value of $\sqrt{(1/2)}$ is:

A. $\pi/2$ B. $-2\sqrt{\pi}$

If $I_n = \int_0^{\frac{\pi}{2}} \tan^n x dx$ then $I_n + I_{n-2} =$

- A. $\frac{1}{n-2}$
- B. $\frac{1}{n}$
- C. $\frac{n}{n-1}$

 $\not D$. $\frac{1}{n-1}$

 $\int_{-1}^{2} |x - 1| \, dx =$

A. 2/5 www.upscstudymaterials.com

B. 5

Q. 5/2

D. 2

If $y = \sin^{-1} x$ then $(1 - x^2)y_2 =$

- A. xy

- D. x^2y

 $\int_0^{\infty} \sqrt{x} e^{-x^3} dx =$ 87

- B. $\sqrt{\pi}$ www.upscstudymaterials.com C. $\sqrt{\pi}/2$
- D. $\pi / 3$

 $\int_{0}^{\pi} \sin^{7} 3x \, dx =$

A. $\frac{8}{15}$

B. 105

C. 48

 $p'. \frac{16}{105}$

If x+y+z = u, y+z = uv, z = uvw then $\partial(x, y, z)$

 $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ www.upscstudymaterials.com

A. u^2

 $B. u^2v$

C. uvw

D. uv^2

 $\int e^{x}(\tan x + \sec^2 x) dx =$

A. $e^x \tan x \sec x + c$

 $B. \quad e^x \tan x + c$

C. $e^x \sec^2 x + c$

D. $e^2 \sec x + c$

Evaluate $\iint_R y^2 dx dy$ when R is the region bounded by y = 2x, y = 5x and x = 1.

A. 117

_B www.upscstudymaterials.com

C. 48

$$\int_0^\infty \frac{dv}{(1+x^2)^2} =$$

$$\pi/4$$

B.
$$\pi / 8$$

D.
$$2\pi$$

If
$$x = u(1+v)$$
 and $y = v(1+u)$ then

$$\frac{\partial(x,y)}{\partial(u,v)} = ?$$

A. u+vwww.upscstudymaterials.com

In which of the following cases

$$(1-x^2)y_2 - xy_1 = 0$$
 where $y_1 = \frac{dy}{dx}$ and

$$v_2 = \frac{d^2 y}{dx^2}$$

A.
$$Cos(m \sin^{-1} x) = y$$

B.
$$y = (\sin^{-1} x)^2$$

$$Q' = (\cos^{-1} x)$$

$$D. \quad y = \tan^{-1} x$$

95

 $\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin(\theta + \phi) d\theta d\phi = ?$ www.upscstudymaterials.com

- A. 1
- B. 0
- C = 3

D.

•

96 {0, 1} is a set with the operations defined by the following tables:

+	0		
0	0	1	
1	1	0	

	0	1
0	0	0
1	0	1

Which statement is TRUE?

- A. $\{0, 1\}$ is not a ring
- B. {0, 1} is a ring
- C. {0, 1} is a ring with unit element
- D. {0. 1\square 1\square 2\square 2\squ
- If T is an automorphism of a group G such that $Tx = x^{-1} \forall x \in G$, then:
 - A. G is not abelian
 - B. G is abelian
 - C. Ker $T \neq \{e\}$
 - D. T^{-1} does not exist

The order of 2 and 3 in $(Z_s, +_s)$ are:

$$A. O(2) = 4 \cdot O(3) = 8$$

- $O(2) = 2 \cdot O(3) = 4$
- C. O(2) = 8, O(3) is infinite
- $O(2) = 0 \cdot O(3) = 1$

Consider the group $G = \{1, -1, i, -i\}$ under multiplication. Then-

- G is a cyclic group generated by 1
- В. G is a cyclic group generated by -1

www.upscstudymaterials.com G is a cyclic group generated by

ionly

G is a cyclic group generated by i and-i

100 The product of two eigen values of

$$A = \begin{bmatrix} 6 & -2 & +2 \\ -3 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
 is 14. Find the

third eigen value.

A. 1

B. 2

C. 3

D. 4

101

Rank of
$$\begin{bmatrix} 9 & 7 & 3 \\ 5 & -1 & 4 \\ 3 & 5 & 1 \end{bmatrix} = \text{rank of}$$

then the system of equations:

$$9x - 7y + 3z = 6$$

$$5x - y - 4z = 1$$

$$3x + 5y + z = 2$$

- A. Are consistent and posses infinite number of solutions
- B. Are consistent and posses unique solution
- C. Are inconsistent and posses no solution
- D. Have solutions other than (1, 0, -1)

The inverse of $A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$ is:

A.
$$\begin{bmatrix} -5/2 & 3/2 \\ 2 & -1 \end{bmatrix}$$
B.
$$\begin{bmatrix} 5/2 & 3/2 \\ -2 & 1 \end{bmatrix}$$
C.
$$\begin{bmatrix} -5 & 3 \\ 1 & -1/2 \end{bmatrix}$$

$$\begin{bmatrix} 5/2 & 3/2 \\ -2 & 1 \end{bmatrix}$$

D. does not exist

103

www.upscstudymaterials.com
The eigen values of $A = \begin{bmatrix} 1 & 3 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$

are

A. -1, 3, -4

B. 1, 3, 4

C. 3, 3, 2

D. 1, 5, 2

If R is a ring with zero element, then which is TRUE? A. {o} is an ideal in R but R is not ideal in R R is an ideal but {o} is not an ideal in R Both {o} and R are ideals in R R has no non trivial ideals or improper ideals 105 Which of the following is true? The ring Z of integers has a zero Α. divisor The ring Q of rationals has a zero В. divisor The ring r of reals has a zero divisor Z, Q, R and C have no divisors of zero

Q = The set of rationals, under usual 106 multiplication is: A group Not a group A commutative group D. Not closed Let G is a group of prime order P. Then which is false? A. G is cyclic G has no proper sub groups www.upscstudymaterials.com G has proper sub groups D. G has P-1 generators 108 If G is a group, then the centre Z (G) is defined by $Z(G) = \{z \in G \mid z \le x \le x \le for \}$ all $x \in G$ }. Then-A. Z(G) is not a sub group of G Z(G) is a sub group of G but not normal Z(G) is a normal sub group of G D. G = Z(G)

Let H and K be two finite sub groups of a group G. Then which of the following is NOT true?

X.

HK is not a sub group of G if HK = KH

- B. HK is a sub group of G if and only if HK = KH
- C. HK is a sub group of G if G is abelian

D. O (HK) =
$$\frac{O(H) \ O(K)}{O(H \cap K)}$$

110

Let G = {1, -1, i, -i}, which is normal?

www.upscstudymaterials.com

- A. $\{-1,i\}$
- B $\{-1,-i\}$

 $e^{-\{1,-1\}}$

D. $\{i,-i\}$

Let G is a group of order 2 then -There is no automorphism of G Α. There can be many automorphism В. of G There is only one automorphism that is the identity mapping D. There is only one automorphism that is not the identity mapping A person goes from x to y on cycle at 20 km/hr & returns at 24 km/hr. His average speed is: 22 www.upscstudymaterials.com 21.82 22.42 D. 23.12

	Find the value of p for the following distribution whose mean is 16.6.			
- 1	x:8 12 15 p 20 25 30			
- 1	f: 12 16 20 24 16 8 4			
	A. 16.5			
	B. 17.5			
	C. 16			
	D. 18			
	Karl - Pearson's Coefficient of skewness			
	is given by, Skewness =			
-	Mode-Mean			
	A. Standard Deviation			
	Standarddeviation			
	B. Mean-Mode			
	Mean-Mode			
1	Standard deviation			
	D. Standard deviation			
	Mode-Mean			

Bowley coefficient of skewness lies between:

B.
$$-3$$
 and $+3$

D. None of these

Coefficient of Correlation is the mean of regression coefficients.

A. Arithmetic

Geometric

www.upscstudymaterials.com

C. Harmonic

D. Grouped mean

117 Moment generating function of a normal random variable about its origin is given by:

A.
$$e^{-\mu t + 1/2\sigma^2 t^2}$$

$$B. e^{\mu t + \frac{1}{2}\sigma^2 t}$$

C.
$$e^{\mu t - \frac{1}{2}\sigma^2 t^2}$$

D.
$$e^{-(\mu t + 1/2\sigma^2 t^2)}$$

Arithmetic mean of two regression coefficients is: Square root of the correlation coefficient B. Equal to the correlation coefficient C. Less than the correlation coefficient Greater than the correlation coefficient 119 The odds that x speaks the truth are 3:2 and the odds that person y speaks truth are 3:5. In what percentage of cases are they likely to contradict each other on an identivary with pscstudy materials.com 45.5% 46.5%

47.8%

D.

In a binomial distribution, which of the following is wrong?

- A. Mean = np
- B. 0 , <math>0 < q < 1
- Mean ≤ Variance

D. Variance = npq

In a normal distribution, ratio between Quartile deviation. Mean deviation & Standard deviation is:

A. 10:12:15

B. 10: www.upscstudymaterials.com

C. 10:14:15

D. 11:13:15

- Which of the following statement is FALSE?

 A. Two independent variables are uncorrelated
 - B. $r(x, y)=0 \Rightarrow$ Absence of any linear relationship between x and y
 - C. Uncorrelated variables are independent
 - D. Correlation coefficient is independent of change of origin and scale
- x² distribution CANNOT be applied to test: www.upscstudymaterials.com
 - A. If the hypothetical value of the population variance is $\sigma^2 = \sigma_o^2$ (say)
 - B. The goodness of fit
 - C. The independence of attributes
 - D. If the hypothetical value of the population mean is $\bar{x} = \mu$ (say)

99 % fiducial limits for the mean of normal distribution are:

A.
$$x \pm 2.58 \frac{\sigma}{n}$$

A.
$$x \pm 2.58 \frac{\sigma}{n}$$

B. $x \pm 2.58 \frac{\sigma}{\sqrt{n-1}}$

$$e'$$
 $\frac{1}{x} \pm 2.58 \frac{\sigma}{\sqrt{n}}$

D.
$$\bar{x} \pm 2.33 \frac{\sigma}{\sqrt{n-1}}$$

125 Coefficient skewness of a Poisson distribution is:

B.
$$3 + \frac{1}{\lambda}$$

C.
$$1 - \lambda$$

D.
$$\lambda - 1$$

- A. Increase, Decrease
- B. Decrease, Increase

C. Increase, Increase

D. Remain constant, Increase

127

A & B are events such that

$$p(A \cup B) = \frac{3}{4}, p(A \cap B) = \frac{1}{4}$$

$$P(A) = \frac{2}{3} then P(B) = ?$$
3www.upscstudymaterials.com

 $A = \frac{2}{3}$

B. $\frac{1}{3}$

C. $\frac{1}{12}$

D. $\frac{3}{4}$

Given two regression lines:

$$3x + 2y = 26$$
 and

$$6x + y = 31$$

Find the regression coefficient by x.

A.
$$\frac{3}{2}$$

B.
$$\frac{-3}{2}$$

C.
$$\frac{-1}{6}$$

D.
$$\frac{1}{6}$$

129

Compute the quartiles Q. Q. and Q for the data:

9, 13, 14, 7, 12, 17, 8, 10, 6, 15, 18, 21, 20

- A. 8, 13, 17
- B. 8.5, 13, 17.5
- C. 8, 13.5, 17.5
- D. 8.5, 13.5, 17.5

- Coefficient of variation
- C. Correlation coefficient
- Coefficient of skewness
- 131 In testing the independence of attributes in a 3 x 3 contingency table, using x^2 -test, the number of degrees of freedom is:
 - 🔏 4 www.upscstudymaterials.com
 - B. 8
- D. 12 If $\phi = \log |r|$ then $\nabla \phi$ is:

- The side of a square lamina ABCD is 2a metres. Along \overline{AB} , \overline{CB} , \overline{CD} , \overline{AD} and \overline{BD} act forces of magnitudes 1, 2, 3, 4 and 5 kg weight respectively. Then the algebraic sum of then moments about the centre of the square is:
 - A. -2a kg metres
 - B. $-2\sqrt{2} a kg$ metres
 - C. $(2+5\sqrt{2})akg$ metres
 - D. $(2-5\sqrt{2})akg$ metres
- Two equal unlike parallel forces form a www.upscstudymaterials.com
 - A. Resultant force
 - B. Coplanar system
 - C. Couple
 - D. Parallel system

135	Three forces acting on a particle are in
	equilibrium. The angle between the first
	and the second is 90° and that between
	the second and the third is 120°. The
	ratio of the forces is:

$$\chi$$
. $\sqrt{3}:1:2$

B.
$$1:2:\sqrt{3}$$

C.
$$1:\sqrt{3}:2$$

D.
$$\sqrt{3}:2:1$$

The resultant of two forces P and Q is
$$R_1$$
. If one of the forces be reversed in direction where subtants becomes R_1 .

Then $R_1^2 + R_2^2$ is:

A.
$$R_1^2 + R_2^2 = 0$$

B.
$$R_1^2 + R_2^2 = P^2$$

$$R_1^2 + R_2^2 = 2(P^2 + Q^2)$$

D.
$$R_1^2 + R_2^2 = 2(P^2 - Q^2)$$

The centre of gravity of a solid cone of height h lies on the axis at a distance of:

- A. $\frac{3}{8}$ h from the vertex
- B. $\frac{h}{3}$ from the vertex
- $\cancel{2}$. $\frac{3h}{4}$ from the vertex
- D. $\frac{h}{2}$ from the vertex

Two forces \overline{P} and \overline{Q} act on a particle.

If the sum and difference of forces are at right angles to each other, then:

www.upscstudymaterials.com

- A. P > Q
- B. Q > P
- \mathcal{C} . P = Q
- D. $P \neq Q$

Two forces of magnitudes P and Q act at a point. If the direction of \overline{Q} is reversed, then the resultant turns through a right angle. Then:

A.
$$P = 2Q$$

B.
$$Q = 2 P$$

$$Q$$
. $P = Q$

D.
$$P \neq Q$$

S is the circum centre of a triangle ABC. If forces of magnitudes $\overline{P}, \overline{Q}, \overline{R}$ acting along SA, SB, SC are in equilibrium, then: www.upscstudymaterials.com

A.
$$\frac{P}{\sin A} = \frac{Q}{\sin B} = \frac{R}{\sin C}$$
B.
$$\frac{P}{\sin A/2} = \frac{Q}{\sin B/2} = \frac{R}{\sin C/2}$$

$$\cancel{R} = \frac{Q}{\sin 2A} = \frac{Q}{\sin 2B} = \frac{R}{\sin 2C}$$
D.
$$\frac{P}{\cos A} = \frac{Q}{\cos B} = \frac{R}{\cos C}$$

If λ is the angle of friction, then $tan \lambda = \mu is$: Limiting friction Normal reaction Force of friction В. Reaction Normal reaction C. Reaction Normal reaction D. Limiting friction 142 If three parallel forces P, \overline{Q} and Racting at A. B and C respectively are in equilibrium, then P:Q:R is: www.upscstudymaterials.com A. 1:1:2 AC: CB: AB BC : CA : AB D. AB: BC: AC

Unit normal to the surface $x^2y+2xz=4$ at the point (2, -2, 3) is:

A. $\frac{\hat{i}+2\hat{j}+2\hat{k}}{3}$ B. $\frac{\hat{i}-2\hat{j}+2\hat{k}}{3}$ C. $\frac{\hat{i}+2\hat{j}-2\hat{k}}{3}$

www.upscstudymaterials.com

I is the in centre of a triangle ABC. If forces $\overline{P}, \overline{Q}, \overline{R}$ acting along IA, IB, IC are in equilibrium, then-

A.
$$\frac{P}{\cos A} = \frac{Q}{\cos B} = \frac{R}{\cos C}$$

B.
$$\frac{P}{\cos \frac{A}{2}} = \frac{Q}{\cos \frac{B}{2}} = \frac{R}{\cos \frac{C}{2}}$$

C.
$$\frac{P}{\cos 2A} = \frac{Q}{\cos 2B} = \frac{R}{\cos 2C}$$

D. $\frac{\frac{P_{\text{www.upsestudymaterials.com}}}{\sin\frac{A}{2} - \sin\frac{B}{2} - \sin\frac{C}{2}}$

$$\nabla \times \mathbf{r} =$$

A. A constant vector

B. Zero vector
$$C. \frac{\overline{r}}{|r|}$$

D. None of these

 $\int_{C} (xy - x^{2}) dx + x^{2}y dy \text{ over the triangle}$

bounded by the lines y = 0, x = 1, y = x is:

A.
$$\frac{1}{12}$$

B.
$$-\frac{1}{12}$$

C.
$$\frac{1}{24}$$

D.
$$-\frac{1}{24}$$

If
$$t_n = \frac{\sum n}{\text{www.upscstudymaterials.com}} t_n = ?$$

$$Q. \frac{3e}{2}$$

D.
$$\frac{e}{2}$$

If $\overline{F} = x \hat{i} + y \hat{j} + z \hat{k}$ and S is taken over the region bounded by the planes x = 0. x = a, y = 0, y = a, z = 0 and z = a, then the value of $\iint_{S} \overline{F}$ inds is:

- $A. a^3$
- B. 3a³
- C. $\frac{a^3}{3}$
- D. 4a³

149

If r = x i + y j + z k is the position vector of the point (x, y, z) then the value of

$$\nabla^2 \left(\frac{1}{r}\right) is$$
:

- A. $-\frac{r}{r^3}$
- B. (
- C. 3
- D. $\frac{1}{3}$

If \overline{A} and B are irrotational, which of the following is WRONG?

A.
$$\overline{B}_{\cdot}(\nabla \times \overline{A}) = 0$$

B.
$$\overline{A}.(\nabla \times \overline{B}) = 0$$

 $\not \in \overline{A} \times \overline{B}$ is not solenoidal

D. $\overline{A} \times \overline{B}$ is solenoidal

151

If r is the position vector of the point (x, y, z) then which is TRUE?

A.
$$\operatorname{div} \mathbf{r} = 3$$

B.
$$\nabla_{\Gamma} = \frac{\Gamma}{\Gamma}$$

C.
$$\nabla \times \mathbf{r} = 0$$

All of these are true

Unit vector normal to the surface $x^{2} + 3y^{2} + 2z^{2} = 6$ at the point (2, 0, 1) is:

A.
$$\frac{\hat{i} + 2\hat{k}}{\sqrt{5}}$$

$$\mathbb{R}. \quad \frac{\hat{i} + \hat{k}}{\sqrt{2}}$$

C.
$$\frac{\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}}{3}$$

C.
$$\frac{\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}}{3}$$
D.
$$\frac{\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}}{\sqrt{14}}$$

The directional derivative of the las.com 153 point (1, 2, -1) in the direction of

$$\hat{i} - \hat{j} - 3\hat{k}$$
 is:

$$A. \quad \frac{7}{\sqrt{11}}$$

$$B = \frac{7}{\sqrt{11}}$$

C.
$$\frac{29}{\sqrt{11}}$$

D.
$$-\frac{29}{\sqrt{11}}$$

154			
134	If a system of coplanar forces reduces		
	neither to a single force nor to a single		
	couple, then the system is:		
	couple, then the system is.		
	. D.		
	A. Diverging one		
	B. In equilibrium		
	C. Not in equilibrium		
	D. None of these		
155	Symmetric difference of sets A and B is		
	defined as:		
	A. $(A - B) \cap (B - A)$		
	B. (A wh)w.(Bpst)studymaterials.com		
	C. $(A - B) \cap (B + A)$		
	D. $(A + B) \cup (B - A)$		
156	A closed subspace of a compact metric		
	space is:		
	A. Open		
	B. Compact		
	C. Need not be compact		
	D. None of these		

157	In a metric space M, the full space M is:
	A. An open set
	B. A closed set
	C. Neither open nor closed
	D. Both open and closed
158	Which of the following is compact?
	A. Set of all integers in R'
	B. Set of all rationals in R'
	Ø. [1,2] in R'
	D. (0,∞) in R'
159	For the sequence ipscstudymaterials.com
	$\left\{a_n\right\}_{n=1}^{\infty} = \left\{(-1)^n\right\}_{n=1}^{\infty}$
	$\lim_{n\to\infty}\sup a_n=?$
	A. 0
	B1

D. None of these

160	Which of the following set is NOT "no
	where dense" in R¹?
	A. The set of all positive integers
	B. The Cantor set
	C. Every finite subset of R ¹
	\mathcal{D} . The interval $(0,1)$ in \mathbb{R}^1
161	If $M = R_d$, the real line with discrete
	metric, and if 'a' is any point in R _d then
	1) $B[a,1]= ?$ and
	2) $B[a,2]=?$
	$\Delta (a-1,a+1)(a-2,a+2)$
	A. (a-1, a+1): (a-2, a+2) dymaterials.com
	B. {a}, {a}
	C. {a}, R _d
	D. {a}, {a, a+1}
162	Pick the ODD man out from
	the following.
	A. Comparison test
	B. Cauchy's Root test
	C. D'Alembert's ratio test
	D. Leibnitz test

The alternating series

$$\frac{1}{\sqrt{2}+1} - \frac{1}{\sqrt{3}+1} - \frac{1}{\sqrt{4}-1} - \frac{1}{\sqrt{5}+1} + \dots is$$
:

- A. Convergent
- B. Absolutely convergent
- C. Conditionally convergent
- D. Divergent

164

The series $\sum_{n=1}^{\infty} \frac{1}{(\log n)^{\log n}}$

- A. Converges
- B. Divwww.upscstudymaterials.com
- C. May or may not converge
- D. Oscillates

165

The geometric series

$$1 + x + x^2 + \dots + x^{n-1} + \dots$$
 is

convergent when -

A.
$$0 \le x \le 1$$

$$B_{x}$$
 $x > 1$

$$e = -1 < x < +1$$

D.
$$x = 1$$

1.55					
166	Distance between any two distinct real				
	numbers under discrete metric is :				
	A. Unbounded				
	B. Bounded above only				
	C. Bounded below only				
	D. Bounded				
167	Choose the WRONG statement:				
	A. A sequence has unique limit in IR'				
	B. The sequence $\{n\}_{n=1}^{\infty}$ diverges to				
	infinity				
	Every convergence to the end of t				
	unbounded				
	D. None of these				
168	The following is the nth term of a				
	sequence				
	-				
}	$\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n-1}$.				
	Then the sequence is:				
	A Manatanically increasing				
	A. Monotonically increasing				
	B. Monotonically decreasing				
	C. Neither increasing nor decreasing				
	D. None of these				

If f and g are real valued function then max (f, g) is:

$$A. \frac{|f-g|+f+g}{2}$$

$$B. \quad \frac{-|f-g|+f+g}{2}$$

$$C. \quad \frac{|f+g|+f+g}{2}$$

$$D. \quad \frac{|f+g|+f-g}{2}$$

Which of the following statements is NOT thunkw.upscstudymaterials.com

A. The set of rationals is dense in R

B.
$$\left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right\}$$
 is not dense in [0,1]

C. The discrete metric space Rahas no proper dense subset

 \mathcal{D} . Z – the set of integers dense in R.

$$\lim_{n\to\infty} \left(1 + \frac{1}{n+1}\right)^n = ?$$

- A. e + 1
- В. е
- C. $\frac{1}{e}$
- D. e-1

172

If d = d(x, y) is a metric on M, which of the following is NOT true?

A. $\sqrt{d(x,y)}$ is also a metric on M

www.upscstudymaterials.com

- B. $\frac{d(x,y)}{1+d(x,y)}$ is also a metric on M
- \mathscr{L} . $d^2(x,y)$ is also a metric on M
- D. min $\{1, d(x, y)\}$ is also a metric on M

173 Limit point of the set $\left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right\}$ If $\lim_{n\to\infty} x_n = l$, then 174 $\lim_{n\to\infty} \frac{x_1 + x_2 + \dots + x_n}{\text{www.upscstudymaterials.com}}$ B. n/ D. 21

175 The coordinates of the point on the parabola $y = x^2 + 7x + 2$, which is nearest to the straight line y = 3x - 3 are :

- B. (1, 10)
- C. (2, 20)

D. (-1, -4)The value of $\frac{du}{dt}$, given 176

 $u = x^2 y^3$, $x = 2t^3$, $y = 3t^2$ is:

- 1926 til www.upscstudymaterials.com
- $30 t^{15}$ В.
- 1296 t¹¹
- 1692t11 D.

The derivative of the function

 $y = \log_a x^2$ is:

- A. $\frac{2}{x}$
- B. $\frac{1}{x^2}$
- $\mathcal{Q} = \frac{2}{x} \log_a e$
- D. $\frac{1}{x^2} \log_a e$

 $\int_0^1 x^3 (1-x)^3 dx = ?:$

- 1 www.upscstudymaterials.com
- B. $\frac{\pi}{140}$
- C. $\frac{\pi}{70}$
- D. $\frac{1}{70}$

The coefficient of $(x-1)^3$ in the expansion of e^x is:

- A. $\frac{e}{2}$
- B. $\frac{e}{3}$
- $e' \frac{e}{6}$
- D. $\frac{e^3}{6}$

180

State which is FALSE:

www.upscstudymaterials.com

- A. For n > 3, the integers n, n + 2, n + 4 cannot be all primes
- B. GCD (a, a+2) =1 or 2 for every integer a

C. $2^{3n} - 1$ is not divisible by 7 for every $n \in N$

D. $n^5 - n$ is divisible by 30 for all $n \in N$

181	The sum of the cubes of any three
	consecutive natural numbers will always
	be divisible by –
	A. 6
	B . 9
	C. 18
	D. More than one of these
182	The vectors
	$\alpha_1 = (6, 2, 3, 4), \alpha_2 = (0, 5, -3, 1),$
	$\alpha_3 = (0,0,7,-2)$ are:
	A. Donardont
	A. Denewwitupscstudymaterials.com
	B. Independent
	C. Data not sufficient
	D. None of these
183	An example of a perfect number is:
	A. 8
	B. 30
	Ø. 28
	D. 48

The coefficient of x^n in the expansion

$$1 + \frac{a + bx}{1} + \frac{(a + bx)^2}{1} + \frac{(a - bx)^3}{1} + \dots \times is:$$

A.
$$\frac{a^e n^b}{\lfloor n \rfloor}$$

B.
$$\frac{e^b a^n}{\lfloor n \rfloor}$$

C.
$$\frac{e^a n^b}{|n|}$$

$$\mathcal{D}. \frac{e^a b^n}{\lfloor \underline{n} \rfloor}$$

If e₁ is the well processed wasterials.com 185

 $9x^2 + 4y^2 = 36$ and e_2 is the eccentricity of the conic $9x^2 - 4y^2 = 36$, then -

A.
$$e_1^2 + e_2^2 = 2$$

B.
$$3 < e_1^2 + e_2^2 < 4$$

C.
$$e_1^2 + e_2^2 > 4$$

D. None of these

If the sum of the slopes of the lines given by $x^2 - 2cxy - 7y^2 = 0$ is 4 times their product, then c has the value –

- A. -2
- B. -1
- e. 2
- D. 1

The equation of a straight line joining the feet of the perpendicular from the point (1, 0) on the pair of straight lines $2x^2 - 3xy + y^2 = 0$ is:

- A. 3x + y + 1 = 0 escatudymaterials.com
- B. 2x + 3y 1 = 0
- C. x 3y + 1 = 0
- D. None of these

188	The	e radical axis of two circles is :		
	A.	Parallel to the line joining their centres		
	₽.	Perpendicular to the line joining their centres		
	C.	Inclined at an angle 30° to the line joining their centres		
	D.	None of these		
189	The number of circles of a given radius which touch both the axes is: www.upscstudymaterials.com			
	A. B.			
	C.	3 4		
190	The	polar of focus of a parabola is:		
	Α.	x-axis		
	B.	y-axis		
	Q.	Directrix		
	D.	Latus rectum		

191 A point is such that ratio of its distance from a fixed point and

line $x = \frac{9}{2}$ is always 2:3, then

the locus of the point will be -

- Hyper bola Α.
- Ellipse B.
- C. Parabola
- Circle D.
- The equation to the pair of straight 192 lines through the origin which are perpendicular to the lines $2x^2 - 5xy + y^2 = 0$ is:

A.
$$2x^2 + 5xy + y^2 = 0$$

B.
$$x^2 + 2y^2 + 5xy = 0$$

C.
$$x^2 - 5xy + 2y^2 = 0$$

D.
$$2x^2 + y^2 - 5xy = 0$$

193 The focus of the parabola whose vertex is (3,2) and whose directrix is x - y + 1 = 0 is: (4, 1)B. (1, -1)C. (8, 7)D. (-4, 1)If the line y = 2x + c be a tangent to 194 the ellipse $\frac{x^2}{8} + \frac{y^2}{4} = 1$, then c = ?www.upscstudymaterials.com $C. \pm 1$ D. ± 8 195 The vertex of the cone $9x^2 + 9y^2 - 4z^2 + 12yz - 6zx + 54z - 81 = 0$ is: A. (1, 1, 0)B. (0.0.0)(1, -2, 3)

D. (1, 2, 3)

196 The 1

The pair of straight lines $4x^2 + 6xy - y^2 = 0$ is equally Inclined to the pair of straight lines:

A.
$$2x^2 + 2xy + y^2 = 0$$

B.
$$5x^2 - 6xy + y^2 = 0$$

C.
$$x^2 + 3xy + 2y^2 = 0$$

D. None of these

197

The plane x + y + z = 1 meets the coordinates axes in A, B, C. Then the equation to the cone generated by the limes when section is:

$$A. yz + zx + xy = 0$$

B.
$$yz + 2zx + xy = 0$$

C.
$$yz - zx + 2xy = 0$$

D. None of these

If 'a' and 'c' are the segments of a focal chord of a parabola and 'b' the semi-latus rectum, then –

- A. a, b, c are in A.P
- B. a, b, c are in G.P
- C. a, b, c are in H.P
- D. None of these

The limiting points of the coaxial system of circles determined by

$$x^{2} + y^{2} - 6x - 4y + 3 = 0$$
 and
 $x^{2} + y^{2} + 10x + 4y - 1 = 0$ are -

- A. (1,1) Yawaw 1,43 pscstudymaterials.com
- B. (+1,1) and (-1,0)
- C. (2,1) and (0,1)
- D. (1,-1) and (1,0)

Equation of a circle through origin and belonging to the co-axial system of which the limiting points are (1,2), (4,3) is:

A.
$$x^2 + y^2 - 2x + 4y = 0$$

B.
$$x^2 + y^2 - 8x - 6y = 0$$

$$2x^2 + 2y^2 - x - 7y = 0$$

D.
$$x^2 + y^2 - 6x - 10y = 0$$

www.upscstudymaterials.com