

INSTRUCTIONS

- I. Answer all questions.
- All questions carry equal marks.
- 3. Only one answer is to be given for each question.
- If more than one answers are marked, it would be treated as wrong answer.
- Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.
- 6. 1/3 part of the mark(s) of each question will be deducted for each wrong answer (A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)
- 7. The candidate should ensure that Series Code of the Question Paper Booklet and Answer Sheet 7, must be same after opening the envelopes. In case they are different, a candidate must obtain another Question Paper of the same series. Candidate himself shall be responsible for ensuring this.
- 8. Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable material with him/her will be strictly dealt as per rules.
- Please correctly fill your Roll Number in O.M.R.
 Sheet. 5 marks will be deducted for filling wrong or incomplete Roll Number.

Warning: If a candidate is found copying or if any unauthorised material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted under Section 3 of the R.P.E. (Prevention of Unfairmeans) Act, 1992. Commission may also debar him/her permanently from all future examinations of the Commission.

निर्देश

- 1. सभी प्रश्नों के उत्तर दीजिए ।
- 2. सभी प्रश्नों के अंक समान हैं।
- 3. प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए।
- एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा ।
- 5. प्रत्येक प्रश्न के चार वैकलिपक उत्तर दिये गये हैं, जिन्हें क्रमशः 1, 2, 3, 4 अंकित किया गया हैं। अध्यर्थी को सही उत्तर निर्दिष्ट करते इस उनमें के केवल कुठ गोले अथवा बबल को उत्तर पत्रक घर नील बाल चाइंट पैन से गहरा करना है।
- 6. प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा जायेगा। गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवां किसी भी प्रश्न के एक से अधिक उत्तर से हैं। किसी भी प्रश्न से संबंधित गोले या बबल को खाली छोड़ना गलत उत्तर नहीं माना जायेगा।
- 7. प्रश्न-पत्र पुरितका एवं उत्तर पत्रक के लिफाफे की सील खोलने पर परीक्षार्थी यह सुनिश्चित कर लें कि उसके प्रश्न-पत्र पुरितका पर वही सीरीज अंकित है जो उत्तर पत्रक पर अंकित है। इसमें कोई भिन्तता हो तो वीक्षक से प्रश्न-पत्र की ही सीरीज वाला दूसरा प्रश्न-पत्र का लिफाफा प्राप्त कर लें। ऐसा न करने पर जिम्मेदारी अध्यर्थी की होगी।
- 8. मोबाईल फोन अथवा इलेक्ट्रोनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित हैं। यदि किसी अभ्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।
- कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक पर सावधानी पूर्वक सही भरें। गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तांकों में से अनिवार्य रूप से काटे जाएंगे।

चेतावनी : अगर कोई अम्यर्थी नकल करते पकड़ा जाता है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है, तो उस अम्यर्थी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराई जायेगी और आर. पी. ई. (अनुचित साधनों की रोकशाम) अधिनियम, 1992 के नियम 3 के तहत कार्यवाही की जायेगी। साथ ही आयोग ऐसे अम्यर्थी को मविष्य में होने वाली आयोग की समस्त गरीक्षाओं से विवर्जित कर सकता है।

 $02_{\text{BME5_A]}}$

Os

The crank case of many diesel engines are kept under a slight vacuum to

- (1) Improve fuel economy
- (2) Improve air charge velocity
- (3) Reduce the risk of crank case explosion
- (4) All of the above
- 2 Engine operating conditions may be indicated by the colour of exhaust smoke. Black smoke could indicate
 - (1) Insufficient speed droop setting
 - (2) Overloaded engine
 - (3) Clogged drain holes in the oil control rings
 - (4) Complete combustion
- 3 In a normally operating diesel engine the main source of lubricating oil contamination in the crank case is a result of the
 - (1) Metal particles loosened by wear
 - (2) Condensation of water vapours
 - (3) Break down of the lubricating oil itself
 - (4) Fuel dilution

www.upscstudvmaterials.com

- The bore and stroke of the cylinder of a six cylinder engine working on an Otto cycle are 17cm and 30 cm respectively, total clearance volume is 9225 cm³, and then what is the compression ratio?
 - (1) 7.8

(2) 6.2

(3) 15.8

(4) 5.4

- 5 . Which of the following symptoms shows that the combustion is necessarily complete?
 - (1) Presence of free carbon in exhaust
 - (2) Presence of CO in exhaust
 - (3) Presence of Oxygen in exhaust
 - (4) Presence of Nitrogen in exhaust
- 6 What is the purpose of supercharging an engine?
 - (1) To increase the power output
 - (2) To reduce specific fuel consumption
 - (3) To reduce the noise of the engine
 - (4) To improve cooling of cylinders

 $02_{BME5_A]}$

[Contd...

7 Consider the following:

- 1. Catalytic convertor
- 2. Use of high compression ratio
- 3. Oxidation catalyst in the exhaust manifold
- 4. Use of high degree of supercharger

By which of these techniques, can the oxides of nitrogen in the exhaust be controlled?

(1) 1 only

- (2) 2 and 4 only
- (3) 2, 3 and 4 only
- (4) 1, 2, 3 and 4
- Which phenomenon has the most adverse effect on volumetric efficiency when engine works at high speeds?
 - (1) Flow friction and choking
 - (2) Ram effect and chocking
 - (3) Flow friction and charge heating
 - (4) Charge heating and back flow
- Consider the following tudymaterials.com
 - Increased cetane number
 - 2. Increased compression ratio
 - 3. Increased injection advance
 - 4. Increased air turbulence

Which of the factors will reduce the physical delay in diesel engine?

- (1) 1, 2 and 3 only
- (2) 2 and 4 only
- (3) 2, 3 and 4 only
- (4) 1, 2, 3 and 4
- 10 Consider the following factors:

Diesel engine knock can be reduced by increasing

l. Engine speed

- 2. Compression ratio
- 3. Degree of supercharge
- 4. Injection advance

Which of the statements is/are true?

- (1) 1, 2 and 3 only
- (2) 2 and 3 only
- (3) 1, 3 and 4 only
- (4) 2 only

02/BME5_A]

[1	When does ignition initiates in a Spark Ignition Engine?
	(1) Immediately after spark
	(2) Immediately after completion of physical and chemical del
	(3) Immediately after the completion of Ignition lag
	(4) just after completion of flame propagation
12	If the evaporator temperature of a plant is lowered keeping the cond
	temp. constant, the power input of compressor required will be
	(1) same (2) more
	(3) less (4) unpredictable
[3]	Where does the lowest temp occur in a vapor compression cyc
	(1) condenser (2) evaporator
	(3) compressor (4) drier
14	1 ton of refrigerant is
	(1) the SI unit used in refrigeration problem
	(2) the cooling effect produced by melting 1 ton of ice
	(3) the refrigeration effect to freeze 1 ton of water at 0°C into ice a in 24 hrs.
	(4) the refrigeration effect to produce 1 ton of ice at NTP con
-	Which of the following refrigerent has the highest action! point process
15 \/	Which of the following refrigerant has the highest critical point press
W	/(v)WFiel@BCStUdyMateria)S166iA2
15 W	
W	/(/)///Freco-ACSTUCY Material)S Incom? (3) Freon-22 (4) Ammonia
15 	(4) Ammonia A hermetically sealed unit implies
W	(1) WFierD-HCSTUCY Materials Ireon-12 (3) Freon-22 (4) Ammonia A hermetically sealed unit implies (1) Compressor motor is sealed
W	(1) Compressor motor is sealed (2) Compressor is sealed
W	(1) WFierD-HCSTUCY Materials Ireon-12 (3) Freon-22 (4) Ammonia A hermetically sealed unit implies (1) Compressor motor is sealed
V \	(1) Compressor is sealed (2) Compressor is sealed (3) Refrigerant cycle is sealed (4) Compressor and motor are sealed
V \ 1 6	(1) Compressor is sealed (2) Refrigerant cycle is sealed
V \ 1 6	(1) WFierD-BCSTUCY Materials Freor-12 (3) Freor-22 (4) Ammonia A hermetically sealed unit implies (1) Compressor motor is sealed (2) Compressor is sealed (3) Refrigerant cycle is sealed (4) Compressor and motor are sealed An evaporator pressure regulator performs the following function
W	(1) WFieth ECSTUCY Materials Freen-12 (3) Freen-22 (4) Ammonia A hermetically sealed unit implies (1) Compressor motor is sealed (2) Compressor is sealed (3) Refrigerant cycle is sealed (4) Compressor and motor are sealed An evaporator pressure regulator performs the following function (1) Monitors evaporator temp
V \ 1 6	(1) Wried CSTUCY Materials From 12 (3) Freon-22 (4) Ammonia A hermetically sealed unit implies (1) Compressor motor is sealed (2) Compressor is sealed (3) Refrigerant cycle is sealed (4) Compressor and motor are sealed An evaporator pressure regulator performs the following function (1) Monitors evaporator temp (2) Maintains compressor inlet pressure
\\ 16	(1) WFrequence (2) Streen-12 (3) Freon-22 (4) Ammonia A hermetically sealed unit implies (1) Compressor motor is sealed (2) Compressor is sealed (3) Refrigerant cycle is sealed (4) Compressor and motor are sealed An evaporator pressure regulator performs the following function (1) Monitors evaporator temp (2) Maintains compressor inlet pressure (3) Keeps pressure up for system needs (4) All of these The conditioned air supplied to the room must have the cap
V \ 1 6	(3) Freon-22 (4) Ammonia A hermetically sealed unit implies (1) Compressor motor is sealed (2) Compressor is sealed (3) Refrigerant cycle is sealed (4) Compressor and motor are sealed An evaporator pressure regulator performs the following function (1) Monitors evaporator temp (2) Maintains compressor inlet pressure (3) Keeps pressure up for system needs (4) All of these The conditioned air supplied to the room must have the cap to take up
\\ 16	(1) Wrietn HCStucy Material (2) Streen-12 (3) Freen-22 (4) Ammonia A hermetically sealed unit implies (1) Compressor motor is sealed (2) Compressor is sealed (3) Refrigerant cycle is sealed (4) Compressor and motor are sealed An evaporator pressure regulator performs the following function (1) Monitors evaporator temp (2) Maintains compressor inlet pressure (3) Keeps pressure up for system needs (4) All of these The conditioned air supplied to the room must have the cap to take up (1) Room sensible heat load only
\\ 16	(3) Freon-22 (4) Ammonia A hermetically sealed unit implies (1) Compressor motor is sealed (2) Compressor is sealed (3) Refrigerant cycle is sealed (4) Compressor and motor are sealed An evaporator pressure regulator performs the following function (1) Monitors evaporator temp (2) Maintains compressor inlet pressure (3) Keeps pressure up for system needs (4) All of these The conditioned air supplied to the room must have the cap to take up
\\ 16	(1) Wrietn HCStucy Material (2) Streen-12 (3) Freen-22 (4) Ammonia A hermetically sealed unit implies (1) Compressor motor is sealed (2) Compressor is sealed (3) Refrigerant cycle is sealed (4) Compressor and motor are sealed An evaporator pressure regulator performs the following function (1) Monitors evaporator temp (2) Maintains compressor inlet pressure (3) Keeps pressure up for system needs (4) All of these The conditioned air supplied to the room must have the cap to take up (1) Room sensible heat load only

19	The relative humidity during sens	ible cod	oling process
	(1) increases	(2)	decreases
	(3) remains same	(4)	
20	Piston rings are made of		
it:	(1) cast iron	(2)	brass
	(3) aluminium	.c. (4)	spring steel
21	The addition of iron oxide to the	foundr	y sand improves the
	(1) Bonding	(2)	Green strength
	(3) Hot strength	(4)	Permeability
22	Surface finish of casting depends	upon	
	(1) Mould dressing	(2)	Pattern finish
	(3) Sand compactness	(4)	All of the above
23	Core prints are used for		
	(1) Strengthen core		
	(2) Form seat to support and ho	old the	core in place
	(3) Fabricate core		
:	(4) None of the above WWW. UDSCSTUCYM	ateri	als.com
24	In drawing operation the metal flo	ows due	e to
	(i) Ductility	(2)	Work hardening
٠.	(3) Plasticity	(4)	Shearing
25	Mass production on metallic cans	are us	ually done by
	(1) embossing	(2)	coining
	(3) spinning	(4)	drawing
26	An important product manufacture	d by r	olling is
	(1) I-section	(2)	Tubes
	(3) Metal Rolls	(4)	Rollers
27	A diamond locating pin is used in	n Jigs a	and Fixture because
	(1) Diamond is very hard and w	**	
-	(2) It occupies very little space		
	(3) It helps in assembling with	oleranc	e on center distance
	(4) It has a long life	f1	

28	Bench vice is an example of
	(1) Jig (2) Fixture
:	(3) Locator (4) Clamping device
29	Surging basically implies
	(1) Unsteady periodic and reversed flow
	(2) Forward motion of axial speed above sonic velocity
	(3) The surging action due to the blast of air produced in compress
	(4) Forward movement of aircraft
30	A centrifugal pump is started with the delivery valve kept
30	(1) fully open (2) fully closed
	(3) partially open (4) 50% open
31	Water hammer in pipes is due to
	(1) excessive leakage of flowing fluid
٠.	(2) bursting of pipe under high pressure
	(3) sudden stoppage of flow by the closure of a valve
	(4) hitting of pipe with hammer
22	This of Vincentia circuit.
32	Unit of Kinematic viscosity is
•	(1) m/sec ² (2) m ² /sec
* • • • • • • • • • • • • • • • • • • •	(3) m/sec (4) m ² /sec ³
3 ₩	Whydrody ame and the mal coundary layer thickness is equal wi
J.J.	Prandtl number
٠.	
	(3) =1 (4) >1
34	In a steam power plant the ratio of isentropic heat drop in the prime mo
	to the amount of heat supplied per unit mass of steam is known as
٠.	(1) Stage efficiency (2) Degree of reaction
	(3) Rankine efficiency (4) Relative efficiency
35	If heat and mass transfer take place simultaneously, the ratio of heat trans
35	If heat and mass transfer take place simultaneously, the ratio of heat trans-
35	coefficient to the mass transfer coefficient is a function of the ratio
35	coefficient to the mass transfer coefficient is a function of the ratio (1) Schmidt and Reynolds number
35	coefficient to the mass transfer coefficient is a function of the ratio (1) Schmidt and Reynolds number (2) Schmidt and Prandtl numbers
35	coefficient to the mass transfer coefficient is a function of the ratio (1) Schmidt and Reynolds number (2) Schmidt and Prandtl numbers (3) Nusselt and Lewis numbers
35	(2) Schmidt and Prandtl numbers
	coefficient to the mass transfer coefficient is a function of the ratio of (1) Schmidt and Reynolds number (2) Schmidt and Prandtl numbers (3) Nusselt and Lewis numbers (4) Reynolds and Lewis numbers
35	coefficient to the mass transfer coefficient is a function of the ratio of (1) Schmidt and Reynolds number (2) Schmidt and Prandtl numbers (3) Nusselt and Lewis numbers (4) Reynolds and Lewis numbers Which one of the following properties is more sensitive to increase
	coefficient to the mass transfer coefficient is a function of the ratio of (1) Schmidt and Reynolds number (2) Schmidt and Prandtl numbers (3) Nusselt and Lewis numbers (4) Reynolds and Lewis numbers Which one of the following properties is more sensitive to increase strain rate?
	coefficient to the mass transfer coefficient is a function of the ratio of (1) Schmidt and Reynolds number (2) Schmidt and Prandtl numbers (3) Nusselt and Lewis numbers (4) Reynolds and Lewis numbers Which one of the following properties is more sensitive to increase

-	A mass is suspended at the stiffness 10N/mm and 5N/mm	. The equival	ent spring st	iffness of the
	springs is nearly			
	(1) 0.3N/mm	(2)	3.3N/mm	*.
	(3) 5N/mm	(4)	15N/mm	
38	Critical speed of the shaft is	affected by	:	f*
	(1) diameter and eccentricit	y of the sha	ıft	
	(2) span and eccentricity of		•	
	(3) diameter and span of the			
	(4) span of the shaft			
39	Which one of the following t	olerances set	on inner di	ameter and or
	diameter respectively of head	ed jig bush	for press for	r correct fit
	(1) G7h6	(2)	F7n6	. 0011001 111
	(3) H7h6	(4)	F7j6	
•			~ · , j o	
40	Clausius- Clapeyron equation	gives the sl	ope of a ci	rve in
	(1) p-v diagram	(2)	p-h diagra	
	(3) p-T diagram	(4)	T-S diagra	
		(·)	diagra	
41	Stability of freely failing objection	VMalel et is assure	ISICO	m re of
	(1) Buoyancy lies below its			10 01
	(2) Gravity coincides with i			
	(3) Gravity lies below its n		Siarity	
	(4) Buoyancy lies below its			*
	(1) Dubyaney new below its	meta centre	•	
12	The maximum shear stress occ	ure on the o	uter most fil	
	shaft under torsion. In a close	coiled helic	al anning the	bers of a circu
	stress occurs on the	coned nenc	ar spring the	maximum sn
4	(1) Outermost fibers	(2)	Eihana	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(3) Innermost fiber	` ,		nean diameter
	(5) Amerinost noei	(4)	End coils	
13	In a single reduction a loss		`` *:- *	1 701 1
	In a single reduction, a large transmission is	ge velocity	ratio is req	uired. The b
	•	(0)		
			Helical gea	
	(3) Bevel gear drive	(4)	Worm gear	drive
14	Concents in Wastel O. W. 35			<u>.</u> .
, T	Concepts in "Total Quality M			
	(1) George Dantzig	(2)	Taiichi Oh	
	(3) W. Edwards Deming	(4)	Henry Ford	

 $02_{\text{BME5_A]}}$

05

- 5 To compete on speed, a company must
 - (1) produce a single product
 - (2) centralize all operations
 - (3) use only one supplier
 - (4) have quick feedback mechanisms
- A product has MTBF of 200 hours and a MTTR of 10 hours. What is its system availability?
 - (1) .048

(2) .050

(3) .952

(4) 1.050

- Which of the following characteristics is *not usually* associated with batch production?
 - (1) products made to customer order
 - (2) low volume
 - (3) stable, predictable demand
 - (4) general purpose equipment
- What is the break-even point for the following situations: Fixed cost of product Rs 2000; variable cost of product Rs 5; price per unit Rs 10?
 - (1) 4 units

2) 40 units

- www.y.นุกรีกรtudymaterialอังcom units
- 49 A relationship diagram is
 - (1) a format for displaying manager's preferences for department locations
 - (2) a schematic diagram that uses weighted lines to denote location preference
 - (3) . a type of schematic layout diagram that includes space requirements
 - (4) a network that describes restrictions on the order in which work elements must be performed
- 50 Which of the following statements concerning a Gantt chart is true?
 - (1) Gantt charts are particularly helpful for scheduling and planning large projects.
 - (2) Gantt charts are particularly helpful for scheduling and planning projects with complex precedence relationships.
 - (3) The Gantt chart has been a popular project scheduling tool, but is not widely used now.
 - (4) The Gantt chart indicates where extra time is available and activities can be delayed.

 $02_{\text{BME5_A}}$

[Contd...

- ر م
- With the PERT approach, the variance of the total project completion time is calculated by
 - (1) adding all the individual activity variances together
 - (2) adding all the individual activity variances not on the critical path
 - (3) adding all the individual activity variances on the critical path
 - (4) choosing the largest variance that occurs from the pool of individual activity variances
- 52 Which of the following is true concerning the weighted moving average?
 - (1) The oldest data will generally be given the greatest weight.
 - (2) If the weighted moving average forecast is 57.3, then the final forecast must be rounded up to 58.
 - (3) If the most recent periods are too heavily weighted, the forecast might overreact.
 - (4) The weighted moving average is usually more accurate than a simple moving average.
- 53 For a company that uses a periodic inventory system, which of the following is true?
 - (1) inventory is counted only at specific time intervals
 - (2) The order is the quantity which multiples inventory costs
 - (3) the inventory system is also referred to as a perpetual inventory system
 - (4) the company is using a fixed-order-quantity system
- 54 Which of the following statements concerning the basic EOQ model is true?
 - (1) A decrease in demand will increase the EOQ value.
 - (2) If an actual order quantity is smaller than the EOQ, the annual holding cost is less than the annual ordering cost.
 - (3) An increase in holding cost will increase the EOQ value.
 - (4) In the EOQ formula there is an inverse relationship between setup and carrying costs.
- For a company with an average daily demand of 9 units and a standard deviation of 3 units, a 9-day lead time, and a 95% service level, which of the following statements is true?
 - (1) The reorder point is about 81 units
 - (2) The safety stock is about 15 units
 - (3) The reorder point is about 96 days
 - (4) The reorder point is about 81 days

 $02/BME5_A$

05

56 Which of the following is not a pasic element of the JIT production system?

- (1) cellular layous
- (2) push production system
- (3) small-lot production
- (4) flexible resources
- 57 Maintenance that involves a system of periodic inspection and maintenance designed to keep a machine in operation is called
 - (1) preventive maintenance
 - (2) total productive maintenance
 - (3) predictive maintenance
 - (4) breakdown maintenance
- Which of the following heuristics in a one-machine shop will always minimize flow time and average number of jobs in the system?
 - (1) SPT
 - www.upscstudymaterials.com
 - (3) CR
 - (4) FCFS
- 59 All of the following are considered nonproductive activities relating to equipment except
 - (1) setting up or breaking down a machine
 - (2) maintaining the machine
 - (3) waiting for workers or material
 - (4) all of the above are nonproductive activities
- 60 Whose book, entitled Quality is Free, emphasized the cost of quality?
 - (1) Walter Shewhart
 - (2) Phillip Crosby
 - (3) W. Edwards Deming
 - (4) Joseph Juran

02/BME5_A]

[Contd...

05

- 61 Which of the following is not true concerning the ISO 9000?
 - (1) The ISO 9000 committee establishes generic quality standards for manufacturing firms worldwide.
 - (2) The ISO 9000 committee is a government organization that is a subset of the United Nations.
 - (3) The ISO 9000 is a guide for using the other four standards in the series 9001 through 9004.
 - (4) The ISO 9000 does not tell management how to meet requirements but does indicate what is required.
- A p-chart has been prepared. Computations show that the average proportion defective is .032, while the standard deviation is .0176. From this data, what are the 3-sigma control limits for this chart?
 - (1) LCL=.032 UCL=.085
 - (2) LCL=.053 UCL=.032
 - (3) LCL = 0 UCL = .085
 - (4) not enough information to determine the control limits
- A part has a length specification of 2 mm with tolerances of \pm .03 mm. The current process has an average length of 2.01 mm with a standard deviation of .02 mm. What is the value of the C_{\pm} ratio?
 - www.upscstudymaterials.com
 - (2) .333
 - (3) .500
 - (4) 1.333
- 64 For a facility with an average arrival rate of 45 units per hour and a service rate of 60 units per hour, with a maximum system size of 3 units, which of the following statements is true?
 - (1) The probability the system is full is .63
 - (2) The average number of units waiting to be served and being served is 1.15 units
 - (3) The average time a unit spends waiting to be served is 1.8 minutes
 - (4) The average number of units waiting to be served is 64 units
- A company wishes to determine the proportion of time workers are idle. Using work sampling, the idle time during 150 observations is 26%. If the company wants a 95% confidence interval, how many more observations are needed if the company wants to be within +/-4% of the true proportion?
 - (1) 9 observations

(2) 150 observations

(3) 312 observations

(4) 462 observations

02/BME5_A]

V			•				•
66	In d	lecision theory, "e	expected valu	e of pe	erfect informa	ation" is th	e
	(1)	average expecte	d payoff				
	(2)	value of a deci-					
	(3)	value of a deci-		-	· ·		
	(4)	maximum value		naker i:	s willing to	pay to pur	chase
		perfect informat	ion				•
67	Whie	ch of the following	criteria wou	ld a con	noany that pro	oduces elec	tronic
7.	equi	pment and compo					
	(1)	land and constru	action costs				
	(2)	availability of s	killed worker	S	•		
	(3)	transportation co	osts		•		
	(4)	proximity to rav	w materials				
68	Whic	ch of the following	ng location a	nalysis 1	techniques in	volves a m	ethod
		valuating different					
		distance ?				,	
	(1)	load-distance tec	chnique	(2)	location fac	ctor rating	
	(3)	center-of-gravity	technique	(4)	transportati	on model	
69	· A li	near programming	model is a	n exami	nle of a		
	(1)	probabilistic mo	del	. (2)	deterministi	c model	
V	V V(&) /V	graphis Castell C	ymate	riąjs	- physical m	odel	
70		term which reflec	ts an accepta	ble pro	portion of de	fects in a	ot to
		consumer is ?					
	(1)	AOQ		(2)	LTPD	i	
	(3)	OC		(4)	AQL	•	
71	Whil	e machining which	ch of the fol	llowing	improves su	rface finish	1 ?
	(1)	Increased depth			•	•••	
	(2)	Increased feed r	ate			•	
	(3)	Increased cutting	speed				
	(4)	Formation of bu	ilt-up edge	•			
72	At v	vhat rpm should a	a lathe be ru	n to gi	ve a cutting	speed of 2	0 m/
	min	when turning a r	od of diame	ter 40	mm ?		•
	(1)	100 rpm.			160 rpm		
	(3)	200 rpm	•	, ,	250 rpm		
73	Petro	ol engine carburet	ors are man	ıfacture	d bv		
	(1)			(2)	Centrifugal	casting	-
	(3)	Ÿ	-		Die casting	-	
	-			(ד)	Die Gasting		
- 02) /RMG	'E A1	10		1 19111		

2			•
74	Which of the following cast iron is	s resist	ant to attack by sea water?
	(1) Low chromium cast iron	(2)	Low nickel cast iron
	(3) Low sulphur cast iron	(4)	Low phosphorous cast iron
75	The coolant generally used while	machin	ing with carbide tools is
	(1) Kerosene	. (2)	Water
٠.,	(3) Soluble oil	(4)	Graphite
76	Among the following, which materia	al is ha	ving highest machine-ability?
	(1) Cast iron	(2)	Mild steel
	(3) High carbon steel	(4)	Aluminium
77	Which of the following qualifies a	s a pr	ecision casting process ?
	(1) Inget casting	(2)	Investment casting
	(3) Sand casting	(4)	Shell molding
78	Which of the following terms best	descri	bes cemented carbide ?
	(1) Ceramic	(2)	Cermet
`	(3) Composite	(4)	Metal
79	Hot working of metals refers to white regions relative to the melting point absolute temperature scale?		
	(1) Room temperature	(2)	0.2 Tm
	(3) 0.4 Tm	(4)	0.6 Tm
80	In a turning operation, the change to which one of the following?	in radi	us of the work part is equal
•	(1) 1 × depth of cut	(2)	2 × depth of cut
	(3) 1 × feed		2 × feed
81	Which of the following abrasive mate hardened tool steel?	rials is	most appropriate for grinding
	(1) Aluminium oxide	(2)	Cubic boron nitride
	(3) Diamond	(4)	Silicon carbide
82	Of the following processes, which o removal rates ?	ne is n	oted for the highest material
	(1) Electric discharge machining		•
1	(2) Electrochemical machining		
•	(3) Laser beam machining		
	(A) Plasma are outting		· ·

 $02_{\text{/BME5_A]}}$

L			(
83	Which of the following are advanta	iges of d	ie casting over sand casting?
	(1) Higher melting temperature	metáls	
	(2) Higher production rates		
	(3) Larger parts can be cast		
	(4) Mold cannot be reused	-	
84	Which of the following process	ses for	the new ceramic materials
0.	accomplishes shaping and sinterin		
	(1) Doctor-blade process		Freeze drying
	(3) Hot pressing	(4)	
85	Which of the following abrasive ma	teriale ic	most appropriate for grinding
O.J	steel and cast iron?	ici iais is	most appropriate for grinding
	(1) Aluminium oxide	(2)	Cubic boron nitride
	(3) Diamond	(4)	
or	Considere Auber and made has		
86	Seamless tubes are made by	(0)	has Courter
	(1) piercing operation		hot forging
	(3) power rolling	(4)	none of the above
87	In electro-chemical milling operati	ion, the	gap between tool and work
	kept is of the order of		
	(1) No gap		0.25 mm
V	www.upscstudymate	erials	3.CO III
88	The cutting tool used in the sparl		*
Ψ.	(1) Arc	(2)	
	(3) Electrode	(4)	Dielectric
	(3) Licotrodo	(1)	Diciccino
89	Gear teeth vernier is used to me	asure	•
	(1) Circular pitch	. (2)	Depth of tooth
	(3) Tooth thickness	(4)	Pitch line thickness
90	In blanking operation, the angle	of chear	ie given on
	(1) Punch	(2)	
	(3) Both punch and die		None of the above
91		ould be	designated by which of the
	following grades ?		
	(1) H ₅ , H ₁₁	(2)	H ₆ , H ₁₀
	(3) H_8 , H_6	(4)	H_{10}, H_{5}
92	The processes are commonly used	l for pr	oducina novuder
_	(1) Atomization	(2)	Reduction Process
•	(3) Electrolytic process		•
	(a) moontorano brocess	(4)	All of the above

ib			•
93	What else does hydrogen fuelled	fuel cell	produce other than heat and
	electricity ?		- F and other than hour und
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(1) Carbon dioxide	(2)	Pure water
	(3) Nitric acid	(4)	
	Office of the second second	· .	
94	Centralised collection device for		
	(1) Fuel cell	1.	Power tower
	(3) Solar collector	(4)	Solar photovoltaic
95	The future growth of large scale	hydro p	ower plants in the developed
	world probably will be limited	because	
	(1) the release of impounded	water alto	ers stream flow patterns
	(2) most economical sites are	•	
· '.	(3) reservoirs eventually fill w	ith sedin	nents
	(4) all of the above	•	
96	The nodal agency for coordinat under EC act in India is	ing the	energy conservation activities
	(1) Bureau of Indian Standards		
	(2) Bureau of Energy Efficience	•	The second secon
٠.	(3) Bureau of Energy Education	-	
	(4) WE Viceni OS Energy and Him		als com
	MANAGER AND CHEIRN AIR	olomient	113.00111
97	What type of energy is derived	from hes	ated ground water ?
	(1) Solar energy	(2)	Geo-thermal energy
	(3) Nuclear energy	(4)	OTEC
	(c) Thursday onorgy	(1)	OTEC
98	Important waste management tec	hniques	
,	(1) Disposal-biodegradable	(2)	Recycling
-	(3) Landfills	(4)	All of the above
	(-)	(7)	An or the above
99	An electric heater is left on for	30 minu	tes During this time it uses
	1200 W of electric energy. The	total cos	t of the electricity will be if
`	electricity costs 7 paisa per kW	h	t of the electricity will be it
	(1) 252 paisa	(2)	25200 paisa
	(3) 4200 paisa	(4)	4:2 paisa
			4.2 paisa
100	What two gases are typically co	mbined i	n a fuel cell ?
	(1) Hydrogen and nitrogen	(2)	
	(3) Oxygen and nitrogen	(4)	70
	•••	(7)	Transmit and mittaken
กร	/BME5 A] 15		E FORM OF MENT AND A PARK
	//BME5_A] 15		[Contd]

www.upscstudymaterials.com

 $02_{\rm /BME5_A]}$

LECTURER (TECHNICAL EDUCATION DEPT.) - 2012 PAPER CODE (02) MECHANICAL ENGINEERING

14	/08	/20	13
/	UO,	<i>,</i> 20	TO

SET_A	RES
1	4
2	2
3	*
4	4
5	3
6	1
7	1
8	1
9	*
10	2
11	3
12	2
13	3 2 2
14	3
15	4
16	4
17	4
18	3
19	1
20	1
21	3
22	4
23	2
24	1
25	4
26	1
27	3
	*
28	1
29	
30	2
31	2 3 2 3
32	2
33	
34	3 2
35	
36	*
37	2
38	3
39	*
40	*
41	*
42	3
43	4
44	3
45	*

JLI_A	ILLS
51	3
52	*
53	1
54	2
55	2
56	2
57	1
58	1
59	*
60	2
61	2
62	3
63	2
64	2
65	*
66	4
67	2
68	*
69	2
70	4
71	3
71	3
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3 V_L ² DS 4
<u>\\</u> , <mark>72\\\</mark> 73	V GDS
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V. L ² P ⁹
72/// 73 74 75	V_12ps *
\ <u>\</u> \ <u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	* * *
72/// 73 74 75 76	* * * 4 2
72/// 73 74 75 76	* * * 4 2 2
72/// 73 74 75 76 77 78	* * * 4 2
72/// 73 74 75 76 77 78 79	* * 4 2 2 4
72 / / / 73	* * 4 2 4 1 2
72/// 73 74 75 76 77 78 79 80 81	* * 4 2 4 1 2 4 1 2 4
72/// 73 74 75 76 77 78 79 80 81 82	* * 4 2 2 4 1 2 4 2 4 2
72/// 73 74 75 76 77 78 79 80 81 82 83	* * 4 2 4 1 2 4 2 3
72/// 73 74 75 76 77 78 79 80 81 82 83 84	* * 4 2 2 4 1 2 4 2 4 2
72/// 73 74 75 76 77 78 79 80 81 82 83 84 85	* * 4 2 4 1 2 4 2 4 1 2 4 1 1
72/// 73 74 75 76 77 78 79 80 81 82 83 84 85 86	* * 4 2 2 4 1 2 4 1 2 4 2 3 4 1 2 3
72/// 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87	* * 4 2 2 4 1 2 4 1 2 4 2 3 4 1 2 3
72/// 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88	1 2 4 2 3 4 1 2 2 4 1 2 2 3 4 1 2 2 4 1 2 2 3 4 1 2 2 1 1 2 2 1 1 2 1 1 2 1 1 1 1 1 1
72/// 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88	* * 4 2 4 1 2 4 1 2 4 1 2 3 4
72 / / / 73	12 0 4

SET_A

67 2 68 * 69 2 70 4 71 3 71 3 72 7 12 7 73 4 74 * 75 * 76 4 77 2 78 2 78 2 79 4 80 1 81 2 82 4 83 2 84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2 94 2
69 2 70 4 71 3 71 3 72 7 12 7 73 4 74 * 75 * 76 4 77 2 78 2 79 4 80 1 81 2 82 4 83 2 84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
70 4 71 3 72 7 12 7 73 4 74 * 75 * 76 4 77 2 78 2 79 4 80 1 81 2 82 4 83 2 84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
71 3 72 /
73 4 74 * 75 * 76 4 77 2 78 2 79 4 80 1 81 2 82 4 83 2 84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
73 4 74 * 75 * 76 4 77 2 78 2 78 2 79 4 80 1 81 2 82 4 83 2 84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
73 4 74 * 75 * 76 4 77 2 78 2 78 2 79 4 80 1 81 2 82 4 83 2 84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
75 * 76 4 77 2 78 2 79 4 80 1 81 2 82 4 83 2 84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
76
77 2 78 2 79 4 80 1 81 2 82 4 83 2 84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
78 2 79 4 80 1 81 2 82 4 83 2 84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
79 4 80 1 81 2 82 4 83 2 84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
80 1 81 2 82 4 83 2 84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
81 2 82 4 83 2 84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
82 4 83 2 84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
83 2 84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
84 3 85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
85 4 86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
86 1 87 2 88 3 89 4 90 2 91 * 92 4 93 2
87 2 88 3 89 4 90 2 91 * 92 4 93 2
88 3 89 4 90 2 91 * 92 4 93 2
89 4 90 2 91 * 92 4 93 2
90 2 91 * 92 4 93 2
91 * 92 4 93 2
92 4 93 2
93 2
94 2
95 4

www.upscstudymaterials.com

46	*
47	3
48	3
49	*
50	3

96	2
97	2
98	4
99	4
100	2

NOTE: * MEAN DELETED

www.upscstudymaterials.com