Tear here

SO

QUESTION BOOKLET UNTIL YOU ARE ASKED TO DO DO NOT TEAR THIS COVER OF THE

Tear here

Sl. No. :	050069		PGCF							
		Register Number								

2012

CHEMICAL ENGINEERING

Time Allowed : 3 Hours } [Maximum Marks : 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- This Booklet has a cover (this page) which should not be opened till the invigilator gives signal
 to open it at the commencement of the examination. As soon as the signal is received you should
 tear the right side of the booklet cover carefully to open the booklet. Then proceed to answer the
 questions.
- 2. This Question Booklet contains 200 questions.
- Answer all questions.
- 4. All questions carry equal marks.
- 5. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 6. An Answer Sheet will be supplied to you separately by the Invigilator to mark the answers. You must write your Name. Register No., Question Booklet Sl. No. and other particulars on side 1 of the Answer Sheet provided, failing which your Arswer Sheet wit not be evaluated.
- 7. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc., with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, your Answer Sheet will not be evaluated.
- 8. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 9. In the Answer Sheet there are **four** brackets [A] [B] [C] and [D] against each question. To answer the questions you are to mark with Ball point pen ONLY ONE bracket of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

[A] [C][D]

- 10. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 11. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
- 2. Do not tick-mark or mark the answers in the Question Booklet.
- 1. The last sheet of the Question Booklet can be used for Rough Work.

www.upscstudymaterials.com

www.upscstudymaterials.com

1.	Partial recirculation	of warm	and	humid	air	leaving	a	tower	is	more	likely	to
	occur in											

- a natural draft tower A)
- a forced draft tower
- an induced draft tower C)
- spray tower.
- 2. The diffusivity of liquids is directly proportional to the temperature to the power of

2 B)

C)

- 3/2. D)
- 3. If lattice sites are unoccupied, an atom in an adjacent site may jump into such a vacancy. It is
 - A) Interstitialcy mechanism
- B) Crowd-ion mechanism
- C) Interstitial mechanism
- Di Vacancy mechanism.
- The absolute humidity Y' of water vapour-air mixture is given by 4.
 - A) $Y' = \frac{\bar{P}_A}{\bar{P}_A} \times \frac{29}{18}$ b) $Y' = \frac{\bar{P}_A}{\bar{P}_A} \times \frac{18}{29}$ Www.upscstudymaterials. $\bar{\bar{C}}$ am

C) $Y = \frac{\overline{P}_A}{P_A - \overline{P}_A} \times \frac{18}{29}$

- D) $Y = \frac{\bar{P}_A}{P_A \bar{P}_A} \times \frac{29}{18}$.
- The binary diffusivity in liquid is proportional to temperature 5.

 $T^{3/2}$

 T^2

- T^3 . D)
- The Knudsen diffusivity is proportional to 6.
 - A) $D_{K,A} \propto T$

B) $D_{K,A} \propto T^{3/2}$

O $D_K \propto T^{1/2}$

- D) $D_{\kappa} \propto T^2$.
- 7. Which one of the following scales is used for expressing specific gravity of petroleum products?
 - A) Baume scale

API scale

C) Twaddell scale D) Brix scale.

701

| Turn over

~~	~~
P1 +	6 : H

8. For air-water system at atmospheric conditions, Lewis number	8.
---	----

A) > 1

B) < 1

C) 1

D) 0.

9. For any reversible, cyclic process; the entropy of the system is

 $\Delta s = 0$

B) $\Delta s < 0$

C) $\Delta s > 0$

D) $\Delta s = 1$.

10. In polytropic process $(PV^n = \text{constant}) n = 1$. It means

A) an adiabatic process

B) an isothermal process

C) an isobaric process

D) a reversible process.

11. Proximate analysis of coal determines

A) Moisture, ash, sulphur, volatile matter

B) Carbon, ash, sulphur, nitrogen

Moisture, volatile matter, ash, fixed carbon
WWW_LIDSCSTLICVMATERIALS_CO

D) Carbon, hydrogen, nitrogen, sulphur.

12. The most preferred material for tower fill is

A) wood

B) concrete

Ò√ PVC

D) chrome steel.

13. A compound of which melecular weight is 103, analyses C = 81.5%, H = 4.9%, N = 13.6%. What is the formula ?

 $AV C_7 H_5 N$

B) $C_6H_4N_2$

C) $C_7 H_4 N$

D) C₆ H₅ N.

14. The diffusivity coefficient is defined as the ratio of its flux \boldsymbol{J}_A to its

..... gradient.

A) Temperature

B) Pressure

Concentration

D) Velocity.

15.	In r	nass transfer operations such as	leachii	ng, drying, adsorption and reverse
	osn	nosis, diffusion occurs in the		phase.
	A)	Liquid	by	Solid
	C)	Gas	D)	Solid-solid.
16.	The	diffusion of solutes through certai	n type	s of polymeric solid is described in
	tern	ns of		
	A)	solubility	BY	permeability
	C)	diffusivity	D)	crystallinity.
17.	Elec	ctrostatic precipitator is used to con	ntrol tl	he pollutants.
	A)	Gas	B	Air
	C)	Water	D)	Solid.
18.	Diff	usive movement row be within the	Teide	fill ag the pores or may also involve
		diffusion of adsorbed	solute	? .
	A)	Liquid	B)	Solid
	C)	Gas	M	Surface.
19.	The	choice of solvent for absorption is	not ba	sed on the property
	A)	viscosity	B	thermal conductivity
	C)	volatility	D)	solubility.
20.	In a	a packed tower, the liquid and gas	comp	positions change continuously with
		of packing.		·
	A)	volume	B)	density
	dV	height	D)	area.
		70	1	[Turn over

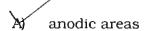
PGCH	
------	--

21.	Dry bulb temperature of a vapour-gas mixture is determined by immersion of a			
	then	mometer in the		
	A)	Solute	B)	Gas
	C)	Vapour	M	Vapour gas mixture.
22.	The	total effective interfacial surface	for m	nass transfer is described as the
	prod	luct of specific interfacial surface an	ıd	
	A)	volume	By	height
	C)	area	D)	breadth.
23.	The	equilibrium vapour pressure that is	exert	ed by a component in a solution is
	prop	portional to the mole fraction of that	comp	onent. It is called as
	A)	Dalton's law	B)	Henry's law
	SV.	Raoult's WWW.Upscstud	yPma	aterals.com
24.	The	absolute humidity is given by the ra	itio of	
	A)	mass of solid/mass of gas	В)	mass of liquid/mass of gas
	Ø	mass of vapour/mass of gas	D)	mass of gas/mass of water.
25.	The	Grosvenor humidity is called as		
	A)	absolute humidity	B)	molar absolute humidity
	de	mass absolute humidity	D)	molal absolute humidity.
26.		solubility of any gas is influenceribed by	ced b	y the temperature, in a manner
	A)	Raoult's law	B)	Henry's law
	C)	Fick's law	rb)	van't Hoff's law.

PGCH

27.	The	overall tray efficiency can be compu	ited b	y the equation
	A)	equilibrium trays × real trays	BY	equilibrium trays real trays
	C)	real trays × equilibrium trays	D)	real trays equilibrium trays
28.	The	material balance is an expression	of the	law of conservation of
	in a	ccounting terms.		
	A)	energy	B)	power
	101	mass	D)	heat.
29.	The	most preferred material for the case	ing wa	alls of a cooling tower is
	A)	PVC	By	FRP
	C)	CAB	D)	Wood.
30.	For	processes in which chemical react	tions	occur, it is desirable to utilize the
		units.		·
	A	gram-molew.upscstudyn	าซิte	emetal fraction
	C)	weight fraction	D)	mass fraction.
31.	Mole	e % of A is given by the equation		
	A)	weight fraction \times 100	By	mole fraction × 100
	C)	volumetric fraction \times 100	D)	atomic fraction \times 100.
32.	The	newton-metre is the work done w	vhere	a force of one newton acts over a
	dist	ance of one metre. It is equal to		in S.I. unit.
	A)	kilowatt	BA	joule
	C)	watt	D)	erg.
33.	Whi	ch of the following is a likely value o	of the	superficial air velocity in hyperbolic
	towe	er?		
	A)	100 m/s	B)	10 m/s
	4	l m/s	D)	0·1 m/s.

701


[Turn over

DCCU	
FUUL	

34.	In a cooling tower terminology, the 'range' means					
	the reduction in temperature of the hot water					
	B) the difference between the maximum and minimum air flow rates					
	C) the change in the air temperature					
	D)	the reduction in temperature of the	e cold	water.		
35.	If th	e 'approach' in a cooling tower is s	smalle	er, the height of the packed section		
	A)	be less	B	be more		
	C)	remain unaffected	D)	be zero.		
36.	Anti	mony oxide is an example of				
	A)	anodic inhibitor	B	cathodic inhibitor		
	C)	anodic accelerator	D)	cathodic accelerator.		
37.	Red	uction of moisture content of air to	such	an extent that the amount of water		
	cond	densed on metal is too small to edu	न्व	peign This is known as		
	A)	Deaeration	B)	Neutralization		
	er	Dehumidification	D)	Deactivation.		
38.		function of addition of sodium su	lphide	e in cathodic inhibitors, in natural		
	À	to eliminate oxygen	B)	to introduce oxygen		
	C)	oxidation	D)	none of these.		
39.	Anti	imony and arsenic oxides are use	ed as	inhibitors in cathodic inhibitors,		
	beca	ause they				
	A)	decrease hydrogen overvoltage				
	BY	increase hydrogen overvoltage				
	C)	increase & decrease hydrogen over	rvolta	ge		
	D)	none of these.		. •		

40.	Catl	nodic coatings are obtained by coating	ng	
	'AV	a more noble metal		
	B)	metal having lower electrode poten	tial	
	C)	a more active metal		
	D)	none of these.		
41.	The	caustic embrittlement corrosion at	high p	oressure is due to
	A)	sodium sulphate	A)	sodium carbonate
	C)	tannin	D)	lignin.
42.		ch of the following is sandwich	ed be	tween two layers if 99.5% pure
	alun	ninium in Alclad ?		
	At	Duralumin	B)	Copper
	C)	Zinc	D)	Nickel.
43.		process of coating iron for steel so rusting is known as	ate	with a thin coat of zinc to prevent
	A)	tinning	BI	galvanizing
	C)	metal cladding	D)	none of these.
44.	In c	athodic inhibitor, corrosion may be	reduc	ed by
	M	slowing down the diffusion of hydr	ated I	H + to the cathode
	B)	increasing the diffusion of hydrate	d H +	to the cathode
	C)	increasing the diffusion to cathodic	c area	4
•	D)	aeration.		
45.	Zino	c chloromate in primary coating of p	aints	is a powerful
	A)	accelerator	B)	retarder
	Ox/	inhibitor	D)	none of these.
		703		Turn over

- 46. Rusting of iron is
 - A) prevented by zinc coating
 - by prevented if the article is connected with a wire of Mg
 - C) enhanced by wet air
 - D) retarded by the presence of dissolved salts.
- 47. Chemical corrosion always takes place at

- B) cathodic aveas
- C) anodic and cathodic areas
- D) in the interior of metal.
- 48. During galvanic corrosion, the more noble metal acts as
 - A) an anode

- B) anode as well as cathode
- cathodeWWW.upscstudynatemindegmenn
- 49. The corrosion will be rapid at

A)
$$pH = 7$$

C) pH > 7

- D) none of these.
- 50. Corrosion is an examplé of
 - oxidation

B) reduction

combination reaction

- D) erosion.
- 51. What is the effect of dissolved carbon dioxide on rate of rusting of iron?
 - A) Decreases

- B) No effect
- C) Increases & decreases
- Increases.

11 PGCH A pure metal rod half-immersed vertically in water starts corroding at the 52. bottom, due to the rod above & closely adjacent to water line becomes anode A) B) the lower part of rod immersed in water is more oxygenated C) the lower part of rod becomes cathodic differential aeration. 53. The addition of copper sulphate to zinc placed in 1N H $_2$ SO $_4$ will enhance the corrosion rate B) reduce the corrosion rate C) increase & decrease the corrosion rate none of these. Dl In aerated atmosphere and elevated temperatures which of the following metals 54. will have however at the second ymaterials.com A) Nickel B) Chromium Tungsten None of these. D) 55. Which of the following anions in a medium results to the formation of insoluble reaction products, that inhibits further corrosion? A) Chloride ion Bì Ammonium salts C) Traces of copper 60T Silica gel. If anodic area is smaller than cathodic area, then 56. cathodic current density is greater than anodic current density A) B) cathodic current density is equal to anodic current density anodic current density is greater than cathodic current density none of these. D)

701

Turn over

57. In non-passivating type of corrostion, the corrosion rate may be decreased by

- A) maximizing flow velocity
- B) minimizing flow velocity
- C) enhancing the diffusion rate
- D) none of these.

58. In designing corrosion control, when two dissimilar metals are to be in contact, then

- A) those metals should be as far as possible to each other in the electrochemical series
- B) the anodic material should have small area
- anodic material should have as large area as possible
- D) none of these.

59. Mercaptan is an

- A) Inorganic cathodic inhibitor
- B) Inorganic anodic inhibitor
- Organic cathodic inhibitor
- D) Organic anodic inhibitor.

60. What is the reduction range in corrosion rate observed during the transition from the active to the passive film?

A) 10^{-3} to 10^{-4} mpy

B) 10^{-2} to 10^{4} mpy

C) 10^{5} to 10^{9} mpy

10³ to 10⁶ mpy.

61. Deterioration of metal due to the activity of living organism is called

A) pitting corrosion

B) passivity

Use biological corrosion

D) both (A) and (B).

62. Depolarization is the result of interaction between the oxidizing agent and

- A) nitrogen gas on the surface
- B) neon gas on the surface
- C) helium gas on the surface
- by hydrogen gas on the surface.

63. 'Season cracking' is a term applied to

- A) intergranular corrosion
- B) caustic embrittlement

Ver stress corrosion of copper alloys, mainly brass

D) pitting corrosion.

64. The function of amine in protecting corrosion in iron is by keeping

A) high | H + | in solution

low [H+] in solution

C) low [OH -] in solution

D) neutral.

65. Which of the following metal oxides is volatile?

A) AgO

B) Fe $_2$ O $_3$

C) Al₂O₃

MoO 3.

66. The chemical formula greatis dymaterials.com

A) FeO.x H $_2$ O

B) NaO.FeO.x H₂O

Fe 2O 3.x H 2O

D) Fe₂(SO₄)₃.Fe₂O₃.xH₂O.

67. Which of the following statements is not correct?

Aluminium corrodes faster than iron

- B) Iron corrodes faster than aluminium
- C) Impure metal corrodes faster than pure metal under identical condition
- D) wire mesh corrodes faster at the joints.

68. In which of the following metals, specific volume of their oxide is less than that of the metal?

A) Aluminium

B) Chromium

Potassium

D) Copper.

701

[Turn over

PGC	H	14		
69.	The	particle shape, size and distribution	ofaj	pigment influence the
	A)	lattice structure	B)	crystalline structure
	CV	rheological properties	D)	coefficient of dispersion.
70.	Cho	ice of the pigments are dependent u	pon	
	A)	the dispersing resin	B)	main resin type and structure
	CV	both (A) and (B)	D)	none of these.
71.	Any	heat exchangers for vehicle like	car ı	radiators surface pretreatment is
	requ	nired because of		•
	A)	anti-corrosion property		
	B)	water splash proof property		
	C)	deodorizing and anti-bacterial prop	erty	
72.	For	all of these. WWW.UPSCStudy emulsion polymerization normally the		
	. A)	high density	B	low viscous
	C)	high viscous	D)	low density.
73.		nentation process is classified accor-	,	•
70.	A)	nature of alloy of iron only	g v	N2
	LBT	nature of alloy of iron with coating	metal	
	C)	nature of coating metal		
	D)	none of these.		
74.	The	properties of acrylic acid methacry	lic est	er polymers depend mainly on
	A)	acid used	B)	ester used
	lor	alcohol used	D)	ether used.

abrasive blast cleaning C)

Pigments consist of powder like crystalline particles which are

soluble in organic solvents only A)

B) insoluble in organic solvents only

101 soluble either in organic solvents or in water

D) soluble in water only.

701

Turn over

PGCH 16 Tag open-cup apparatus is used for 82. A) the solute allowed to diffuse in dry air B) the solute allowed to diffuse in ambient air the solvent vapours allowed to diffuse in the ambient air the solvent vapours allowed to diffuse in dry air. D) 83. Anodised coating is performed on non-ferrous metals and their alloys by A) Cathodic process B) Anodic process Anodic oxidation process D) None of these. Luminescent paints fluoresce under the influence of 84. A) sunlight source B) artificial light source ultraviolet source none of these. D) 85. The relative solvent power of hydrocarbon solvents or diluents are an indicator of Aniline point WWW. Upscstudy A) C) Heptane number Kauri-butanol value. 86. Crude titanium tetrachloride is purified by fractional distillation A) liquor filtration C) wet treatment D) oxidation. 87. The better flow and lap-in properties in solvent systems may be obtained by using solvent blends with lower volatility A) higher volatility higher viscosity. C) higher density D) Non-drying oil contains 88. A) high percentage of conjugated fatty acid esters Bì low percentage of conjugated fatty acid esters only saturated fatty acid esters D) none of these.

89.	In solvent systems for spray applications, the percentage of low boiling point is
	(Based on total solvent composition)

A) brush coating

B) sandblasting and acid-etching

C) dip coating

D) air-knife coating.

91. The saponification value of linseed oil is

92. Glyceryl monolaurate surfactant is

A) Amphoteric

B) Anionic

C) Cationic

Non-ionic.

93. The number of militaring of potassium by hoxide required to neutralize completely the free acid present in one gram of an oil is known as

A) saponification value

acid value

C) ester number

D) iodine value.

94. Which of the following combinations is commonly known as varnish?

A) Binder and additive

B) Additive and volatile liquid

C) Binder and solvent

Binder and volatile liquid.

95. The viscosity of cellulose based lacquers is measured by

A) Ubbelohde viscometer

B) Ostwald viscometer

C) Gel permeation chromatography

falling ball viscometer.

96. When the varnished finish is exposed to sunlight and coloured, then it is known as

A) baked enamel

brushed enamel

C) varnish

D) paint.

701

| Turn over

PGCI	н		18	
97.		usual ratio of cellulose to resin r		equers is
	A)	5:1	B)	1:3
	OF	3:1	D)	1:4.
98.	Colle	odion is a solution of		
	A}	cellulose in ether-alcohol solven	t	
	B	cellulose-ester in ether-alcohol s	solvent	
	C)	cellulose in acetone		
	D)	cellulose ester in acetone.		
99.	Pain	t is		
	A)	baked enamel		
	B)	brushed enamel		
	CH	dispersion of a pigment in a var	mish	
	D)	solution of resin in a volatile sol	ayent Myma	terials.com
100.		fluid is stirred, brushed or othe		rked and become less viscous, it is
	refe	rred to as		
	A)	application	B)	conversion
	.01	thixotropic	D)	autotropic.
101.	The	drying oil which is used in varni	sh is	
	A)	Groundnut oil	By	Soybean oil
	C)	Sunflower oil	D)	Gingelly oil.
102.	The	ease of polymerization of the giv	en set of	monomers is
	A)	ethylene > propylene > isobutyl	ene	
	B)	propylene > ethylene > isobutyl	ene	
	C)	isobutylene > ethylene > propyl	ene	

by isobutylene > propylene > ethylene.

103. Silica modulus in manufacture of good cement clinker is defined as

- A) SiO $_2$ / (MgO + Al $_2$ O $_3$)
- B) $CaO/(MgO + SiO_2)$
- C) SiO_2 / (CaO + Al $_2$ O $_3$)
- b) SiO 2 / (Al 2O 3 + Fe 2O 3).

104. Waterproof cement contains which of the following, in addition to normal constituents?

- W Calcium stearate, oleic and lauric acids
- B) Calcium silicate
- C) Iron silicate
- D) Calcium and magnesium silicate.

105. The essential component of a acrocrete cement is

- A) sodium and potassium oxides
- B) aluminium and sodium oxides
- C) sodium and potassium powder
- aluminium powder.

106. The composition of kaolinite is

- A) K $_2$ O.MgO.Al $_2$ O $_3$.SiO $_2$.H $_2$ O
- B) Al 20 3.2SiO 2.2H 20
- C) Al $_2$ O $_3$.5SiO $_2$.n H $_2$ O
- D) Fe $_2$ O $_3$.Al $_2$ O $_3$.2SiO $_2$.2H $_2$ O.

107. Which one of the following is acid refractory?

A) Magnesite

B) Silicon carbide

Silica

D) Chromite.

108. The increasing fusion temperature of the refractories is

- A) Kaolinite > Silica Brick > Magnesia Brick > Zirconia
- B) Silica Brick > Kaolinite > Zirconia > Magnesia Brick
- C) Kaolinite > Magnesia Brick > Silica Brick > Zirconia
- Zirconia > Magnesia Brick > Kaolinite > Silica Brick.

701

[Turn over

PGCH		

109. The chromite contains

'AN Cr and Fe

B) Cr and Sn

C) Cr and Zn

D) Cr and Cu.

110. The ore of Nickel, pentlandite contains

A) (Fe.Ni.Cu) S

B) (Ni.Mg) SiO $_2$ x H $_2$ O

C) (Fe, Co, Ni) As

D) (Ni, As).

111. The anode mud in refinery of nickel contains

A) Cu, Ag, Fe

B) Ag, Pb, Cu

C) Hg. Ag, Cu

Hg, Au, Pb.

112. The compostion of cartridge brass is

A) Cu = 70% : Zn = 20% : Al = 10%

BY Cu = 70% : Zn = 30%

C) Cu = 60% : Zn = 10% : Co = 10% : Al = 20%

D) Cu = 50% : Zn = 20% : Co = 10% : Al = 20%.

113. The hardest of all artificial abrasives is

A) Alundum

B) Carborundum

Boron norbide

D) None of these.

114. The function of metal in high refractory ceramic particles is

A) suspending agent

B) dissolution agent

CY binder

D) solubilizer.

115. The approximate composition of ordinary glass sodalime glass is

A) Na ₂O.PbO.Al ₂O ₃

By Na 20.CaO.6SiO 2

C) K₂O,PbO.6SiO₂

D) Na ₂CO ₃.CaO.6SiO ₂.

116. Flint glass should contain which one of the following?

AY Red lead

B) Soda

C) Potash

D) Borate.

117. If the interfacial boundary energy of the adhesive and adherent surface is lower than the sum of the surface charges of the adhesive and adherent, then the adhesion results in

21

Ay permanent

B) temporary

C) weak

D) none of these.

118. The addition of small amount of maleic acid to polyvinyl chloride results in

- A) reduction in adhesive strength
- By enhancement of the adhesive strength
- C) no change in adhesive strength
- D) no adhesion.

119. Which of the following adhesives is used for bonding non-porous surfaces?

A) Shellac resin

B) Soya bean glue

C) Casein glue

Polyvinyls.

120. Glues of protein origin schibit better strength by S. COM

addition of alkali

- B) addition of acid
- C) maintaining neutral pH
- D) none of these.

121. Which of the following polymers has the highest glass transition temperature?

A) Polystyrene

B) Polyethylene

C) Polyester

Polycarbonate.

122. The polydis persity of a polymer is given by

 M_{w}/\bar{M}_{m}

B) \bar{M}_m / \bar{M}_w

C) $\frac{\sum N_i M_i}{\sum N_i}$

 $D) = \frac{\sum N_i M_i^2}{\sum N_i M_i}$

123. In Ziegler-Natta polymerization, the reason for stereo-specificity of polymerization is due to coordination of

Monomer with atom

B) Polymer chain with atom

C) Hydrogen

D) Oxygen.

701

[Turn over

PGCF	1	22		
124.	The	catalysts used in cationic polymeriza	ation a	are compounds with pronounced
	Λ)	electron donors	13)	electron acceptors
	C)	neutral	D)	complex.
125.	prov	mosetting polyester resins are uside a tough resistant finish. Whieling drying?		•
	A)	Oxidation and degradation	B)	Reduction and degradation
	cl	Oxidation and cross linking	D)	Reduction and cross linking.
	High 'Ay B)	density polyethylene is prepared by low pressure polymerization high pressure polymerization	y	
	C)	high pressure with high temperature	re	
127.	D) The	none of these. WWW.UDSCStUC swelling behaviour of an elastomer	yma can b	aterials.com e predicted by
	A)	Boltzmann distribution	B	Flory-Huggins treatment
	C)	Arrhenius equation	D)	Mark-Houwink equation.
128.	The	chief flux-forming components of th	e mix	in the cement manufacture are
	W	alumina and iron oxide	B)	silica and iron oxide
	C)	alumina and silica	D)	none of these.
129.	Meta	allic glass was discovered by		
	Ar	Duwez	B)	Young
	C)	Tassios	D)	Kevlar.
130.	Amo	ong the following, which one retards	the ra	ate of hydration ?
	A	Sugar	B)	CaCl ₂
	C)	Both (A) and (B)	D)	None of these.

131.	. Steel and concrete have								
	A	similar coefficients of thermal expansion							
	B)	different coefficients of thermal expansion							
	C)	similar fracture strain							
	D)	same density.							
i 32.	Phot	ochromic silicate glasses possess							
	A)	optical darkening property	B)	optical bleaching property					
	C)	thermal bleaching property	br	all of these.					
133.	The	gradual cooling of glass products is	called						
	A)	tempering	B	annealing					
	C)	quenching	D)	galvanising.					
134.	The	setting and hardening of cement is							
	A)	an oxidation process	B)	a reduction process					
	C)	a decomposition process	br	a hydration process.					
135.	Phos	sphate adhesives are made bly reacti	rer	pephorie acid with					
	A	Zinc oxide	B)	Copper oxide					
	C)	Aluminium oxide	D)	Lead oxide.					
136.	Λn c	example of a popular adhesive is							
	A	cyanoacrylite	B)	acrylonitrile					
	C)	polyamide	D)	epoxy resin.					
137.	Whi	ch of the following is an example for	adhe	sive?					
	A	Epoxy resin	B)	Amberlite					
	C)	Copper sulphate	D)	Deolite.					
138.	An e	engineering plastic is		•					
	A)	Polystyrene							
	B)	LDPE							
	C)	HDPE							
	10)	Acrilonitrile-butadiene-styrene (AB	S).						
		-							

24

139. In rubber, the role of sulphur is as a/an

A) accelerator

vulcanising agent

C) softener

D) antioxidant.

140. The repeat unit of polymer in acylonitrile fibre is

C)
$$\begin{bmatrix} -CH_3 - CH - \\ CH_3 \end{bmatrix}_n$$

141. The degree of polymerization in radical polymerization by termination by coupling is (with usual notation)

- A) R_p / R_i www.upscstudymate/ials.com
- C) $R_p / 2R_i$

D) $2R_p/R_t$.

142. The kinetic chain length in the radical polymerization is (with usual notation)

 R_p/R_i

B) R_i/R_p

C) R_1/R_p

D) $R_i / (R_p + R_t)$.

143. The polymerization of methyl methacrylate in water is an example of

- A) solution polymerization
- B) emulsion polymerization
- precipitation polymerization
- D) bulk polymerization.

144. In the polymerization of styrene, benzoquinone acts as

A) retarder

B) initiator

C) co-monomer

) inhibitor.

O	↸
4	J

145. The kinetic chain length for thermal generation of free radicals in the absence of an added initiator involving two molecules of monomer is

- A) $(k_l)/(k_p/k_l)^{1/2}$
- $(k_p)/(k_i/k_i)^{1/2}$
- C) $(k_d)/(k_i/k_i)^{1/2}$
- D) $\left(k_p\right)/\left(\frac{k_l}{k_l}\right)^{1/2}$.

146. The polymerization of styrene initiated by azo-bis-isobutyronitrile (AIBN) proceeds normally at a rate proportional to

- Ay square root of initiator concentration
- B) initiator concentration
- C) independent of initiator concentration
- D) inverse of initiator concentration.

147. What is the role of polyvinyl alcohol in the suspension polymerization of vinyl chloride ?www.upscstudymaterials.com

A) Retarder

B) Agglomerator

Suspension agent

D) Macro-initiator.

148. Terylene is a

A) polyamide

B) polyester

C) polyglycol

D) polycarbonate.

149. Nylon 6, 6 is

A) polyamide

B) polyester

C) polyether

D) polyacrylate.

150. The principle mechanism involved in adhesion is

- A) mechanical interlocking only
- B) diffusion theory only
- C) electrostatic theory only
- D) all of these.

701

[Turn over

PGCH 26 151. Porosity and roughness of the surface will lead to stronger adhesion A) weaker adhesion significantly lesser adhesion D١ C) none of these. 152. The joint strength will be proportional to the film strength of the adhesive when the adherent is stronger than adhesive B weaker than adhesive Cl equal to the adhesive D) significantly lesser than the adhesive. 153. Car wind shield is made of A) B) polyacrylic acid polystyrene polycarbonate D) polymethacrylic acid. 154. A natural polymer is vw.upscstudymaterials. starch 155. If the monomer molecular weight is 100, and if the polymer molecular weight is 10000 then the degree of polymerisation is 100 A) 50 1000 D) 10. C) 156. The amorphous polymer is a conglomeration of badly packed interlocking chains and the extra empty space caused by the random molecular arrangement is called A) Matrix B) Chain coupling Free volume none of these. D) 157. The solubility of polymer decreases with increase in molecular weight of the polymer B) decrease in molecular weight of the polymer C) increase in melting point of the polymer D) decrease in melting point of the polymer.

158.	Natu	iral rubber is mainly		
	A)	Polybutadiene	B)	Polystyrene
	C)	Polychloroprene	D	Polyisoprene.
159.	Brar	nched chain polymer possesses		
	A)	low density and high melting point		
	by	low density and low melting point		
	C)	high density and low melting point		
	D)	high density and high tensile stren	gth.	
160.	The	monomer which is used in the prod	uction	of polystyrene plastics is
	A)	Butadiene	BI	Styrene
	C)	Chloroprene	D)	Acrylonitrile.
161.	Buty	vle rubber is mainly used in tubeles	s tyres	s because
	M	impermeable to air	B)	permeable to air
	C)	impermeable to water	D)	impermeable to light.
162.		ch one of the following compound	ate	pres be anomequired for rubber
	. ,	anization ?		
	A	Mercaptobenzothiazole	B)	Carbon black
	C)	Thiophenols	D)	Benzoic acid.
163.	Dacı	ron is a		·
	A	fibrous polymer	B)	rough polymer
	C)	soft polymer	D)	strong polymer.
164.	Poly	tetrafluoroethylene (PTFE) is know	n as	
	A)	Dacron	Br	Teflon
	C)	Nylon	D)	Perspex.
165.	Lubi	ricants are used particularly in		
	A)	Granulation	B	Cold-molding
	C)	Extrusion	D)	Zone melting.
		701	1	Turn over

A) Amo		B) D)	aldehyde
Epox A) Amor	ketone phenol ng the following, which one offers n	nsatio B) D)	n of aldehyde
A) Amor	ketone phenol ng the following, which one offers n	B) D)	aldehyde
Amor	phenol ng the following, which one offers n	D)	•
Amor	ng the following, which one offers n	-	
AL			alkanes.
		nore e	fficiency?
C)	Venturi scrubber	B)	Spray tower
	Wet cyclone scrubber	D)	Gravitational settler.
Fun	nigation' is the term used to indica	te	behaviour.
A)	plume	B)	smog
C)	fog	Dr	smoke.
Gase	cous sampling may be carried out by	y	
N	adsorption	B)	distillation
C)	vaporization	D)	desorption.
The a	air to cloth ratio of fabric filter for fl	ly ash	emissions is around
A)	20: 30WWW.upscstudy	ma	terials.com
C)	2:20	DY	2.
-	•	strear	n by abrupt collision against a flat
A		B)	Centrifugal
	- 0		Filtration.
	-		Cement
		. >	Polyethylene.
		נאָז	Polyeutytene.
N	NO 2 from thermal power plant		
B)	SO 2 from thermal power plant		
C}	CO 2 from thermal power plant		
D)	CO from thermal power plant.		
	701		•
	C) Fun (i) C) Gase (ii) C) C) Sepa (iii) C) Colle (iii) C) C) Colle (iii) C)	Venturi scrubber C) Wet cyclone scrubber Fumigation is the term used to indicate plume C) fog Gaseous sampling may be carried out by adsorption C) vaporization The air to cloth ratio of fabric filter for filter air to cloth ratio of fabric filter for filter for filter filter	C) Wet cyclone scrubber Fumigation is the term used to indicate A) plume B) C) fog Gaseous sampling may be carried out by A adsorption B) C) vaporization D) The air to cloth ratio of fabric filter for fly ash A) 20:30WWW.UDSCSTUCY [M] C) 2:20 D) Separation of particulates from an air stream surface forms a basis of Impingement B) C) Thermal precipitation C) Thermal precipitation C) Thermal precipitation C) Polyethylene glycol London smog is mainly contributed by NO 2 from thermal power plant B) SO 2 from thermal power plant C) CO 2 from thermal power plant C) CO 2 from thermal power plant C) CO 2 from thermal power plant

175. Among the following, which one is not a primary air pollutant ?	175.	Among	the	following.	which	one i	s not	а	primar	air /	pollutant	?
--	------	-------	-----	------------	-------	-------	-------	---	--------	-------	-----------	---

A) Sulphur dioxide

B) Nitrogen dioxide

C) Hydrogen sulphide

Smog.

176. A statistically derived figure indicating the concentration of a material that could be expected to kill 50% of test animals under a particular condition or upon exposure for a specified period of time is known as

A) LD ₅₀

BY LC 50

C) TLV

D) TWA.

A 1 μm

B) 500 µm

C) 2 µm

D) 1000 μm

178. The air pollution detection and analysis device is

A) dust fall bucket

- B) paper-tape sampler
- c) highwhile sapsestudymaterials theorem

179. The equation, which relates efficiency to particle size with respect to electrostatic precipitator is

$$\eta = 1 - \exp{-\frac{AW}{Q}}$$

B) $\eta = 1 - \exp \frac{AW}{Q}$

C) $\eta = 1 - \exp \frac{Q}{AW}$

D) $\eta = 1 - \exp \frac{AQ}{W}$,

where

 $A = \text{area of the collection plates, m}^2$

W = drift velocity. m/s of the charged particles

Q =flow rate.

180. Centrifugal field consists of

A) inertial force

B) sweeping force

both (A) and (B)

D) van der Waals force.

701

[Turn over

•	\sim	~	T T
\mathbf{r}		€.	н
	v	•	

181.	Cycl	one separator works based on the p	rinci _l .	ble of
	N	centrifugal force	B)	centripetal force
	C)	gravitational force	D)	electrostatic force.
182.	Low	voltage two-stage electrostatic preci	pitato	rs operate at a voltage range of
	A)	30,000 - 1,00,000 V	B)	15,000 - 20,000 V
	C)	1.000 - 5.000 V	ist	6,000 - 12,000 V.
183.	The	secondary air pollutant from the foll	lowing	is
	1	O 3	B)	NO
	C)	SO ₂	D)	CO.
184.		important climatic factor not affe atants is	cting	the response of vegetation to air
	A)	light quality	B)	light intensity
	C)	temperature	D	pressure.
185.	Carl abou	oon monoxide is commonly found	in cit	y airs at a concentration of up to
	A)	25 ppm WWW.upscstud	yema	eterials.com
	C)	45 ppm	bi	55 ppm.
186.	Whi	ch one is true for cyclone separator	?	,
	A)	Requires large floor area		8
	B)	Very high collection efficiency even	for ve	ery small particles (< 10 μm)
	ler	Ability to operate at high temperate	ire	
	D)	High capital cost.		
187.	Ozo	ne Day is celebrated on		
	W	16th September every year	B)	16th November every year
	C)	16th June every year	D)	16th August every year.
188.	Pho	tochemical oxidants are produced in	i	
	A	Troposphere	B)	Stratosphere
	C)	Ionosphere	D)	Mesosphere.
		701		

189.	39. Pick out the wrong one:								
		1.	Acidic oxidising solution is employed in solution impingers						
	or collection of aerosols								
		Ш.	Centrifugal method is no	ot used for	r particle size greater than 5µm				
		IV.	Plastic bags are not use	d for grab	sampling.				
	Of th	he stat	ements :						
	A)	I aloi	ne	В)	II alone				
	C)	II an	d III	id	III and IV.				
190.	Whi	ch type	e of filters are inert to bot	h acids ar	nd organic solvents ?				
	A)	Millipe	ore	18)	Teflon .				
	C)	Pallifle	ex	D)	Acrapor.				
191. The equipment which cannot be used at temperature where the liquid is to freeze or evaporate too rapidly is									
	A	wet so	crubber	B)	fabric filter				
	C)	mecha	anical collector	D)	cyclone separator.				
192.			aused by SO $_{\mathrm{2}}$ in sulphu	ric acid ca	n be reduced effectively by using				
•	double catalyst double absorption technique								
	ee ·								
	C) single catalyst double absorption technique								
	D) double catalyst single absorption technique.								
193.	The	metho	d which is used to collect	hydrocar	bons & radioactive gases is				
	A)	adsor	ption sampling	B)	absorption sampling				
	C)	grab s	ampling	dy de	condensation sampling.				
				701	[Turn over				

-	_	~	TT
М			н

194.	The	The equipment which collects particulate matter by gravity or centrifugal force				
	but which do not depend upon a vortex is					
	A)	electrostatic precipitator	B)	cyclone separator		
	B	mechanical collector	D)	wet scrubber.		
195.	5. Which one of the secondary meteorological parameters influences air pollution					
	A)	Atomspheric stability	B)	Wind direction & speed		
	C)	Mixing height	DI	Humidity.		
196.	96. Pexoxyacetylnitrate (PAN) in photochemical smog is measured by					
	A)	ultravisible spectrophotometer				
	B)	gas chromatography				
	C)	infrared spectroscopy				
	by gas chromatography and infrared spectroscopy.					
197,	197. Poisoning of catalyst in catalytic converter is mainly due to					
	B)	Olefins WWW.UDSCSTUCY Lead compounds in fuel	B) Ma D)	Paraffins terials.com Alkenes.		
198.	198. Which one of the following is the foul smelling gas?					
	A)	SO 2	BY	H ₂ S		
	C)	H $_2$ O $_2$	D)	Hydrogen fluoride.		
199.	9. Which one of the following is major contributor to the smog forming potential?					
	A)	Alkanes	B)	Alkenes		
	de	Olefins	D)	Paraffins.		
200.	The	The change of temperature with height in the troposphere is called				
	A	Lapse rate	B)	Thermal rise		
	C)	Inversion	D)	Plume.		
	· · · · · · · · · · · · · · · · · · ·					

(SPACE FOR ROUGH WORK)

www.upscstudymaterials.com

34

(SPACE FOR ROUGH WORK)

www.upscstudymaterials.com