कोड / Code: 97

पुस्तिका में पृष्ठों की संख्या / Number of Pages in Booklet: 32

पुस्तिका में प्रश्नों की संख्या /

Number of Questions in Booklet: 100

130045

विषय कोड 97

बुकलेट सीरीज

सारा

समय / Time : 2 घंटे / Hours

INSTRUCTIONS

- 1. Answer all questions.
- 2. All questions carry equal marks.
- 3. Only one answer is to be given for each question.
- If more than one answers are marked, it would be treated as wrong answer.
- Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.
- 6. I/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer means an incorrect answer or more than one answers for up question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)
- 7. The candidate should ensure that Series Code of the Question Paper Booklet and Answer Sheet must be same after opening the envelopes. In case they are different, a candidate must obtain another Question Paper of the same series. Candidate himself shall be responsible for ensuring this.
- Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable material with him/her will be strictly dealt as per rules.
- Please correctly fill your Roll Number in O.M.R. Sheet. 5 marks will be deducted for filling wrong or incomplete Roll Number.

Warning: If a candidate is found copying or if any unauthorised material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted under Section 3 of the R.P.E. (Prevention of Unfairmeans) Act, 1992. Commission may also debar him/her permanently from all future examinations of the Commission.

निर्देश

पूर्णांक / Maximum Marks: 100

- 1. सभी प्रश्नों के उत्तर दीजिए ।
- 2. सभी प्रश्नों के अंक समान हैं।
- 3. प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए।
- एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा ।
- 5. प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं, जिन्हें क्रमशः 1, 2, 3, 4 अंकित किया गया हैं। अभ्यर्थी को सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक गोले अथवा ववल को उत्तर-प्रश्नक पर नीले वॉल प्याइंट पेन से गहरा करना है।
- 6. प्रत्येक मलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा जायेगा। गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रान के एवं से रिकिंक उत्तर से हैं। किमी भी प्रश्न से संबंधित गोले या बबल को खाली छोड़ना गलत उत्तर नहीं माना जायेगा।
- 7. प्रश्न-पत्र पुरितका एवं उत्तर पत्रक के लिफाफे की सील खोलने पर परीक्षार्थी यह सुनिश्चित कर लें कि उसके प्रश्न-पत्र पुरितका पर वही सीरीज अंकित है जो उत्तर पत्रक पर अंकित है। इसमें कोई भिन्नता हो तो वीक्षक से प्रश्न-पत्र की ही सीरीज वाला दूसरा प्रश्न-पत्र का लिफाफा प्राप्त कर लें। ऐसा न करने पर जिम्मेदारी अभ्यर्थी की होगी।
- 8. मोबाईल फोन अथवा इलेक्ट्रोनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित हैं। यदि किसी अभ्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।
- कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक पर सावधानी पूर्वक सही भरें। गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तांकों में से अनिवार्य रूप से कारे जाएंगे।

चेतावनी: अगर कोई अभ्यर्थी नकल करते पकड़ा जाता है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है, तो उस अभ्यर्थी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराई जायेगी और आर. पी. ई. (अनुचित साधनों की रोकथाम) अधिनियम, 1992 के नियम 3 के तहत कार्यवाही की जायेगी। साथ ही आयोग ऐसे अभ्यर्थी को भविष्य में होने वाली आयोग की समस्त परीक्षाओं से विवर्जित कर सकता है।

^g 97_A}

[Contd...

www.upscstudymaterials.com

1

1	Bonding in B ₂ H ₆ can be explained on the basis of which of the following				
	(1)	V. B. T.	(2)	M. O. T.	
	(3)	C. F. T.	(4)	L. F. T.	
	B_2F	${ m H}_6$ में बन्धन को निम्न में से ${ m I}$	केस वि	सेद्धांत के आधार पर समझा सकते है।	
	(1)	V. B. T.	(2)	M. O. T.	
	(3)	C. F. T.	(4)	L. F. T.	
2	Whi	ch of the following will ha	ve sii	milar geometries ?	
	(1)	ClF ₃ and PCl ₃	(2)	H_3O^+ and NH_3	
	(3)	H ₂ O and Li ₂ O	(4)	SF ₄ and CCI ₄	
	निम्न	में से किसकी ज्यामिती एक स	ग्मान ह	होगी :	
	(1)	ClF ₃ एवं PCl ₃	(2)	$\rm H_3O^+$ एवं $\rm NH_3$	
	(3)	H ₂ O एवं Li ₂ O	(4)	SF ₄ एवं CCl ₄	
	V	ww.upscstudy	ma	iterials.com	
3	Crys	stal field theory (C.F.T.) cou	ıld no	ot explain which of the following:	
	(1)	Bonding in metal complex	kes		
	(2)	Spectral properties of met	al co	mplexes	
	(3)	Covalent character of M,			
	(4) Magnetic properties of the complexes				
	क्रिस्ट	.ल फील्ड सिद्धान्त (C.F.T.) निग	न में	से किसे नहीं समझा सका?	
	(1)	धातु संकुलों में बन्धन			
	(2)	धातु संकुलों में रंग का गुण।	(स्पैक्ट्र	दल गुण)	
	(3)	धातु लिगैन्ड बन्ध में सहसंयोज	क गुष	ण	
	(4)	संकुलों के चुम्बकीय गुण।			
97	A]		2	[Contd	

4	Which of the following organometallic compound is known as Grignard reagent				
	(1)	$(CH_3)_3$ SnBr	(2)	$C_2^{}H_5^{}MgBr$	
	(3)	CH ₃ HgCl	(4)	$(CH_3)_2$ AICI	
		में से कौनसा कार्बधात्विक यौि है ?	ाक ग्रि	न्यार अभिकर्मक के रूप में जाना	
	(1)	$(CH_3)_3$ SnBr	(2)	$C_2^{}H_5^{}MgBr$	
	(3)	CH ₃ HgCl	(4)	$(CH_3)_2$ AICI	
5	Whic	ch of the following is a so	ft base	e ?	
	(1)	F ⁻	(2)	Cl¯	
	(3)	Br ⁻	(4)	Γ	
	निम्न	में से कौनसा मृदु क्षार है ?			
	(1)	F ⁻	(2)	CI ⁻	
	(3)	Br ⁻	(4)	I-	
6	Read	WWW.UPSCSHJ	I <mark>dy</mark> I →Nal	materials.com NH2+H2 is known as	
	(1)	Dehydrogenation	(2)	Hydrolysis	
	(3)	Ammonolysis	(4)	Amide formation	
	अभि	क्रेया NaH+NH ₃ Liq. NH ₃	→NaN	$\mathrm{NH_2} + \mathrm{H_2}$ कहलाती है :	
	(1)	विहाइड्रोजनीकरण	(2)	जल अपघटन	
	(3)	अमोनोलाइसिस	(4)	एमाइड निर्माण	
7	Phos	sphagene is the name given	to w	which of the following polymers?	
	(1)	Boronhydrides	(2)	Phosphonitrilic	
	(3)	Metal Siloxanes	(4) =}	Silicates	
		में से किस बहुलक को फौस्फा बोरोन हाइड्राइडस		गम ।दया गया ह <i>ः</i> फोस्फोनाइट्रिलिक	
	` ,	धातु सिलोक्सेनस		सिलिकेटस	
	(2)	ag man n	(1)		
97_	4]		3	[Contd	

8	According to BIS (Beauro of International Standards) the maximum permissible limit of dissolved solids in drinking water is :				
	(1)	1000 mg/l	(2)	500 mg/l	
	(3)	2000 mg/l	(4)	1500 mg/l	
		(अंतरराष्ट्रीय मानक संस्थान) के ब अधिकतम मान्य सीमा है,	अनुसार	पीने योग्य जल में घुलनशील ठोस पदार्थी	
	(1)	1000 mg/l	(2)	500 mg/l	
	(3)	2000 mg/l	(4)	1500 mg/l	
9	Reag	gent used for the extraction	of A	Aluminium is	
	(1)	Alizarin - S	(2)	α - Benzoin	
	(3)	Rubeanic Acid	(4)	Nitron	
	एल्यूर्	मेनियम के निष्कर्षण में प्रयुक्त	होने व	वाले अभिकर्मक का नाम है।	
	(1)	एलीजारीन – S	(2)	α – बैनजोइन	
	(3)	रूबीनिक अम्ल	(4)	नाइट्रान	
10	Chromium shows resistance to corrosion of metals due to humidity. This is done by one of the following				
	(1) It forms oxide and interfere with the effect of water				
	(2) Formation of thin and firm protective oxide film				
	(3)	It increases the corrosion	resist	ance of metals	
	(4)	It forms alloy with the m	etal c	on surface	
		ायम आर्द्धता के कारण धातुओं ग् एक के द्वारा किया जाता है।	में संक्षा	रण का प्रतिरोध करता है। एसा निम्न में	
	(1)	वह आक्साइड बनाता है और	जल	के प्रभाव में बाधा उत्पन्न करता है	
	(2)	एक पतली एवं सुदृढ़ संरक्षणी	य आ	स्साइड परत बनाकर।	
	(3)	वह धातु की संक्षारण प्रतिरोध	ो क्षम	ता को बढ़ाता है।	
	(4)	वह धातु के साथ धातु मिश्र	सतह	पर बना देता है।	
97_	A]		4	[Contd	

11	In Schrod	dinger wave equation y	rep	resents the
	(1) Am	plitude of the wave	(2)	Energy of the particle
	(3) Elec	ctron density	(4)	Wavelength
	श्रोडिंगर त	रंग समीकरण में ψ व्यक्त	ता है	
	(1) तरंग	का आयाम	(2)	कण की ऊर्जा
	(3) इलैव	ट्रान घनत्व	(4)	तरंगदैर्य
12	_	romatography, the basis		eparation of the components of the
	(1) Par	tition coefficients	(2)	Conductivity
	(3) Mo	lecular weight	(4)	Molarity
	वाष्पीय पव परिवर्तन ब		मिटोग्रा	फी द्वारा पृथक्करण निम्न में से किस में
	(1) वित	रण गुणांक	(2)	चालकता
	(3) अणु	भार	(4)	मोलरता
13	The prin- orbitals a	•	ıntum	numbers of electrons in 4f
	(1) n=4	1, l=2	(2)	n=4, l=4
	(3) n=3 4f कक्षक	, l=4 VWW.UDSCStU के लिये प्रमुख एवं दिगशी	(4) Q VI क्वाण	n=4,1=3 Materials.com टम संख्या का मान निम्न में से होगा।
	(1) n=4			n=4, 1=4
	(3) n=3	3, l=4	(4)	n=4, 1=3
14	If the m	ean of the following di	stribu	tion is 6
	x = 2	4 6 10 P+5		
	f = 3 2	2 3 1 2, P is calcul	ated t	to be
	(1) 3		(2)	5
	(3) 7		(4)	
		विभाजन का माध्य मान	5 है :	
		4 6 10 P+5	_	
		2 3 1 2 तब 'P' के ग		ो गणना करने पर आता है :
	(1) 3		(2)	5
	(3) 7		(4)	10
97_ <i>E</i>	A]		5	[Contd

1	5 The	correct order of increase in	bond	angle is:
	(1)	$NH_3 < PH_3 < AsH_3$	(2)	$AsH_3 < NH_3 < PH_3$
	(3)	$AsH_3 < PH_3 < NH_3$	(4)	$PH_3 < AsH_3 < NH_3$
	बन्ध	कोणों में बढ़ता क्रम, निम्न में	से कौ	नसा सही है :
	(1)	$\mathrm{NH}_3 < \mathrm{PH}_3 < \mathrm{AsH}_3$	(2)	$AsH_3 < NH_3 < PH_3$
	(3)	$AsH_3 < PH_3 < NH_3$	(4)	$PH_3 < AsH_3 < NH_3$
1	-	harmacentical and pesticide in ore useful	ndustr	y which chromatographic technique
	(1)	G. L. C.	(2)	T. L. C.
	(3)	H. P. L. C.	(4)	G C
	_		і, किस	क्रोमैटोग्राफिक विधि का अधिक उपयोग
	होता /	ww.upscstudy	ma	
	(1)	G. L. C	(2)	T. L. C.
	(3)	H. P. L. C.	(4)	G. C
1	17 Whic	ch of the following bioaccu	mulate	es in food chain as pollutants
	(1)	Chlorinated pesticides	(2)	Calcium nitrate
	(3)	Magnessium carbonate	(4)	Cadmium nitrate
	निम्न	में से कोन प्रदूषक की तरह ध	भोजन	शृंखला में जैवीय संचयित होते हैं।
	(1)	क्लोरीकृत पीडकनाशी	(2)	कैलशियम नाइट्रेट
	(3)	मैग्नीशियम नाइट्रेट	(4)	कैडिमयम नाइट्रेट
9	97_A]		6	[Contd

18	FORTRAN is which type of programming language						
	(1)	Low level	(2)	High level			
	(3)	Very high level	(4)	None of the above			
	फोरट्र	ान किस स्तर की प्रोग्रामिंग भाष	षा है	?			
	(1)	निम्न	(2)	उच्च			
	(3)	अति उच्च	(4)	उपरोक्त में से कोई नहीं			
40							
19	Whie	ch of the following is false in c	ase of	Swarton Rederoft TG - 75 balance?			
	(1) This requires only small sample weights						
	(2)	One can maintain fast hea	iting 1	rates			
	(3)	Buoyancy effect are reduc	ed to	minimum			
	(4)	It is not useful for isother	rmal :	studies			
	स्वरटन रेडरॉक TG - 75 तुला के लिए निम्न में से कौनसा गलत है ?						
	(1) इसके लिए केवल कम सेम्पल की मात्रा चाहिए।						
	(2) गर्मे /क्षेभ्/क्षां. प्रहेटिकोधनी अस्त्री अस्ति aterials.com						
	(3) उत्लावकता के प्रभाव कम किये जा सकते है।						
	(4)	समतापीय अध्ययन के लिए य	ह उप	योगी नहीं है।			
20	In r	everse phase chromatograph	y, the	stationary phase is			
	(1)	Non - polar	(2)	Polar			
	(3)	Either non - polar or pola	ar (4)	None of these			
	विलो	म प्रावस्था क्रोमेटोग्राफी में स्थिर	प्रावस	था होती है :			
	(1)	अध्रुवीय	(2)	ध्रुवीय			
	(3)	अध्रुवीय या ध्रुवीय	(4)	इनमें से कोई नहीं			
97 .	A 1		7	[Contd			
71_1	*j		,	{Conta			

97_A	k]		8	[Contd				
	(4)	प्रिपरेटिव टी. एल. सी.						
	(3)	आयन एक्स-चेंज टी. एल. सी	t .					
	(2)	एडशोर्पसन (अधिशोषण) टी. ए	रुल. र्स	ì.				
	(1)	पार्टीशन टी. एल. सी.						
	ऐल्केलायड मिश्रण के प्रभाजन के लिए प्रयुक्त होने वाली टी. एल. सी. विधि कौनसी है?							
	(4) Preparative TLC							
	(3)	(3) Ion-exchange TLC						
	(2)	Adsorption TLC						
	(1)	Partition TLC						
23	The alkale	The technique which is grooted is	րդութջ	eleso fractionation of mixture of				
	(3)	28	(4)	29				
	(1)	26	(2)	27				
		5 जैसे 25, 34, 31, 23, 22, 2 कौनसा है?	.6, 35	, 28, 20 एवं 32 का माध्य मान निम्न				
	(3)	28	(4)	29				
	(1)	26	(2)	27				
22		median of the data such as s, which of the following?	25, 3	4, 31, 23, 22, 26, 35, 28, 20 and				
	(3)	द्वितीय कोटि दर का	(4)	मिथ्या प्रथम कोटि दर का				
	(1)	प्रथम कोटि दर का	(2)	शून्य कोटि दर का				
	रेडियोधर्मी विघटन पालन करता है।							
	(3)	Second order rate	(4)	Pseudo first order				
	(1)	First order rate	(2)	Zero order rate				
21	Radio	pactive disintegration follows	s :					

24	Metallic oxides are basic and non-metallic oxides are acidic which can be explained on the basis of						
	(1) Lewis acid base theory ((2)	HSAB principle				
	(3) Brousted lowry concept ((4)	Usanovich theory				
	धात्विक आक्साइड क्षारीय एवं अधात्विक आक्साइड अम्लीय होते है जिसको समझा सकते है।						
	(1) लुईस अम्ल क्षार सिद्धान्त से ((2)	HSAB सिद्धान्त से				
	(3) ब्रान्सटैड लारी अभिधारणा से ((4)	उसानोविच सिद्धान्त से				
25	Borosil is the manufacturers name	e giv	ven to				
	(1) Borosilicate glass ((2)	Boron Polymer				
	(3) Boron hydrides	(4)	Borax				
	उत्पादकों द्वारा बोरोसिल नाम किसे दि	या ग	ाया है ?				
	(1) बोरोसिलिकेट ग्लास	(2)	बोरोन बहुलक				
	(3) बोस्रोन्स् इड्स् pscstud	∜ r	ที่สีเ e rials.com				
26	In the marine atmosphere the p responsible for increase in corros		nce of which substance is mainly of metals in ships				
	(1) NaOH	(2)	Na ₂ CO ₃				
	(3) NaCl	(4)	Na ₂ SO ₄				
	समुद्री वातावरण में वो कौनसा पदार्थ है क्षरण प्रक्रिया को बढ़ा देता है।	है जो	कि मुख्य रूप से समुद्री जहाजों में धातु				
	(1) NaOH	(2)	Na ₂ CO ₃				
	(3) NaCl	(4)	Na ₂ SO ₄				
97_	_A]	9	[Contd				

97_A	\]		10	[Contd			
	(3)	केडमियम (Cd)	(4)	सभी			
	(1)	जिन्क (Zn)	(2)	आइरन (Fe)			
	परमा	णविक अवशोषण स्पेट्रमिति से ि	नेर्धारित	कर सकते है :			
	(3)	Cadmium (Cd)	(4)	All			
	(1)	Zinc (Zn)	(2)	Iron (Fe)			
30	Ator	nic adsorption spectroscopy	can b	e used in the determination of:			
	(3)	DMG	(7)	(0113)2			
	(3)	DMG	(4)	$(CH_3)_2$ CO			
	(1)	CHCl ₃	(2)	EDTA			
	विलायक निष्कर्षण, विश्लेषण विधि में सामान्य मास्कींग कारक के रूप में प्रयुक्त होता है।						
	(3)	www.upscstudy	ma	iterjets.com			
	(1)	CHCI ₃	(2)	EDTA			
29	In s	olvent extraction analysis co	ommon	masking agent used is			
	(3)	इथाइल एल्कोहल	(4)	डाइईथाईल ईथर			
	(1)	कार्बन टैट्राक्लोराइड	(2)	ट्राइआक्टाइल एमीन (TOA)			
	द्रव	आयन विनिमयक का उदाहरण है	5				
	(3)	Ethyl Alcohol	(4)	Diethyl Ether			
	(1)	Carbon Tetrachloride	(2)	Trioctylamine (TOA)			
28	The	example of liquid ion exch	anger	is			
	(3)	n=4, ! =2	(4)	n=5, $l=2$			
	(1)	n=5, l=0	(2)	n=5, l=1			
		में जुड़ने वाले 47 वें इलैक्ट्रॉन वे मन होगा	के लिये	मुख्य एवं एजीमुथल क्वान्टम संख्याओं			
	(3)	n=4, l=2	(4)	n=5, l=2			
		n=5, 1=0	(2)	n=5, l=1			
27		t are the values of principal d electron in Ag	and az	zimuthal quantum numbers for 47 th			

31 Which of the following compounds is known as Zeise's salt?

- (1) $\operatorname{Pt}(\operatorname{NH}_3)_2 \operatorname{Br}_2$ (2) $\operatorname{K}[\operatorname{Pt} \operatorname{Cl}_3(\operatorname{C}_2\operatorname{H}_4)]$
- (3) $\left[Pt(NH_3)_2 Cl_2 \right]$ (4) $\left[Pt(en)Br_2 \right]$

निम्न में से कौनसा यौगिक जीज लवण कहलाता है।

- (1) $\left[Pt \left(NH_3 \right)_2 Br_2 \right]$ (2) $K \left[Pt Cl_3 \left(C_2 H_4 \right) \right]$
- (3) $\left[Pt(NH_3)_2 Cl_2 \right]$ (4) $\left[Pt(en)Br_2 \right]$

The relation between average life (τ) and half life ($t_{1/2}$) of radioactive 32 element is

- (1) $\tau = 1.44/t_{1/2}$
- (3) $\tau = 1.44 \times 0.693/t_{\frac{1}{2}}$ (4) $\tau = \frac{0.693}{t_{\frac{1}{2}}}$

किसी रेडियोधर्मी तत्व की औसत आयु (τ) एवं अर्ध आयु (τ) में सम्बन्ध होता है । WWW.Upscstudymaterials.com

- (1) $\tau = 1.44/t_{1/2}$
- (3) $\tau = 1.44 \times 0.693/t_{1/2}$ (4) $\tau = \frac{0.693}{t_{1/2}}$

Ion exchange chromatography is based on the 33

- Electrostatic Attraction (1)
- (2) Electrical mobility of ionic species
- (3) Adsorption chromatography
- (4) Partition chromotography

आयन विनमय क्रोमेटोग्राफी आधारित है :

- (1) वैद्युत स्थैतिक आकर्षण
- (2) आयनिक स्पीसीज की विद्युत चालकता
- (3) अधिशोषण क्रोमेटोग्राफी
- (4) विभाजन क्रोमेटोग्राफी

97 A]

11

34	Ferro	ocene is the name given to	which	of the following compound?
	(1)	$\left(C_5H_5\right)_2$ Ni	(2)	$\left(C_5H_5\right)_2$ Fe
	(3)	$\left(C_5H_5\right)_2Mn$	(4)	$\left(C_5H_5\right)_2$ Ru
	निम्न	में से कौनसा यौगिक फैरोसीन	के ना	म से जाना जाता है ?
	(1)	$\left(C_5H_5\right)_2$ Ni	(2)	$\left(C_5H_5\right)_2$ Fe
	(3)	$\left(C_5H_5\right)_2Mn$	(4)	$\left(C_5H_5\right)_2$ Ru
35		th of the following reagent is ction?	not a	a chelating reagent used for solvent
	(1)	Dimethyl Glyoxime	(2)	Oxine
	(3)	Cupferron	(4)	Rhodamine - B
		ाक निष्कर्षण में काम में आने वाले ं नहीं है ?	अभिव	क्रमिकों में से निम्न में से कौनसा अभिकर्मक
	(1)	डाइमिथाइल ग्लाइऔक्साइम	(2)	औक्साइन
		कपफैरोन		रोडामीन - B
36	as 4. (1) V (3)	.431 and 4.410, the relative .431 and 4.410, the relative .431 and 4.410, the relative	error (2) (4)	
		प्राकक माना जस 4.431 एवं 4. इन आँकिक मानो में आपेक्षित :		ं मध्य यदि 4.431 सही मान माना जाये ,
	(1)	4.431	(2)	4.410
	(3)	4.610	(4)	4.772
37	In th	ne reaction		•
	HCl	$O_4 + H_2 SO_4 \rightleftharpoons H_3 SO_4^+ + CO_4$	O_4^- , I	H ₂ SO ₄ is behaving as:
	(1)	Conjugate Base		Base
		Acid	(4)	Conjugate Acid
	निम्न	अभिक्रिया में		
	HCl	$O_4 + H_2 SO_4 \rightleftharpoons H_3 SO_4^+ + Close$	O_4^- , I	$\mathrm{H_{2}SO_{4}}$ का व्यवहार है,
	(1)	कान्जूगेट क्षार का	(2)	क्षार का
	(3)	अम्ल का	(4)	कान्जूगेट अम्ल का
97 _ <i>A</i>	A]		12	[Contd

38 m/e value for the metastable ion formed by the fregmentation

77.5 (1)

56,5 (2)

(3) 46.5

105.5 (4)

 $\longrightarrow C_6^{H_5} + CO$ में बने भितस्थायी आयन के m/e का विखंडन मान आता है।

(1) 77.5

56.5 (2)

(3) 46.5 (4) 105.5

The level of humidity at which corrosion is maximum is known as 39

- (1)Normal humidity
- (2) Non permissive humidity
- Critical humidity (3)
- (4) Abnormal humidity

आर्द्रता की बह सीमा निस पर संशरण उच्चतम होता है, कहलाती है।

- (1) नार्मल ह्यूमिडिटी
- (2) नान परिमसिव ह्यूमिडिटी
- (3) क्रिटिकल ह्यूमिडिटी
- (4) एबनार्मल ह्यूमिडिटी

For computer data analysis OMR stands for 40

- (1)Optical Mark Reader
- Optical Memory Reader (2)
- - Optical Memory Recorder (4) Optical Mark Recorder

कम्प्यूटर के आँकड़े विश्लेषित करने हेतु OMR का अर्थ है -

- (1) आप्टीकल मार्क रीडर
- (2) आप्टीकल मैमोरी रीडर
- (3) आप्टीकल मैमोरी रिकार्डर (4) आप्टीकल मार्क रिकार्डर

97_A]

13

41	wnic	ch one of the following is	tne W	eakest Lewis base ?
	(1)	CH ₃	(2)	NH_2^-
	(3)	F ⁻	(4)	OH-
	निम्न	में से कौन सा दुर्बलतम लुईस	क्षार	हे ?
	(1)	CH ₃	(2)	NH ₂
	(3)	F ⁻	(4)	OH-
42	The will		in the	e complex $K_2[NiCl_4]$ in B. M.
	(1)	1.73	(2)	3.87
	(3)	2.83	(4)	4.90
	संकुल	ा यौगिक $\mathrm{K}_2^{}ig[\mathrm{Ni}\mathrm{Cl}_4^{}ig]$ में चुग	बकीय	आघूर्ण का मान B. M. में होगा
	(1)	www.upscstudy	<u>/(2)</u> 8	aterials.com
	(3)	2.83	(4)	4.90
43				O. On checking the value 165 was on of mean, the correct mean is,
	(1)	161	(2)	165
	(3)	167	(4)	169
		ारीक्षणों का माध्य मान 160 है। 25 लिखकर माध्य मान की गण		पर पाया गया कि मान 165 को गलती । सही माध्य मान है,
	(1)	161	(2)	165
	(3)	167	(4)	169
97_A	A]		14	[Contd

44 Which of the following will undergo Mc Lafferty rearrangement

(4)
$$CH_3CH_2CH_2 - COCH_3$$

निम्न में से कौनसा मैक काफर्टी पुनर्विन्यास होगा :

45 For oxygen corrosion in acid solution for metals, it is observed that the :

- (1) Corrosion current for zinc is larger than that of iron
- (2) Corrosion current for zinc is smaller than that of iron
- (3) Corrosion currnet for zinc is same as that of iron
- (4) Corrosion current for zinc is smaller than that of copper धातुओं का अम्लीय विलियन में आक्सीजन संक्षारण में देखा गया है कि
- (1) जिंक की संक्षारण धारा आइरन की संक्षारण धारा से अधिक है
- (2) जिंक की संक्षारण धारा आइरन की संक्षारण धारा से कम है
- (3) जिंक की संक्षारण धारा आइरन की संक्षारण धारा के समान है
- (4) जिंक /की / संक्षारण आरा डकामर की | तंत्राच्या आरा ट्रें डकम है |

46 Which of the following reactions is not an example of natural radio activity?

(1)
$$_{88}\text{Ra}^{226} \rightarrow _{86}\text{Rn}^{222} + _{2}\text{He}^{4}$$

(2)
$${}_{6}C^{14} \rightarrow {}_{7}N^{14} + {}_{-1}\beta^{0}$$

(3)
$${}_{7}C^{14} + {}_{2}He^4 \rightarrow {}_{8}O^{14} + {}_{1}H^1$$

(4)
$$_{84}\text{Po}^{215} \rightarrow _{82}\text{Pb}^{211} + _{2}\text{He}^{4}$$

निम्न में से कौनसी अभिक्रिया प्राकृतिक रेडियोधर्मिता का उदाहरण नहीं है?

(1)
$$_{88}$$
Ra²²⁶ $\rightarrow _{86}$ Rn²²² $+_{2}$ He⁴

(2)
$${}_{6}C^{14} \rightarrow {}_{7}N^{14} + {}_{-1}\beta^{0}$$

(3)
$${}_{7}C^{14} + {}_{2}He^4 \rightarrow {}_{8}O^{14} + {}_{1}H^1$$

(4)
$$_{84}\text{Po}^{215} \rightarrow _{82}\text{Pb}^{211} + _{2}\text{He}^{4}$$

97_A]

15

When two or more than two substances are extracted sextraction process is which of the following:				·
		Batch extraction		Stripping extraction
	(3)	Continuous extraction		Counter - current extraction
		दो या दो से अधिक पदार्थ साथ निम्न में से कौनसी है?	– सा	थ निष्कर्षित किये जाते है, तब निष्कर्षण
	(1)	बैच निष्कर्षण	(2)	निर्लेपन निष्कर्षण
	(3)	लगातार निष्कर्षण	(4)	विपरीत धारा निष्कर्षण
48	The	correct order of increase in	n bone	d order for following is:
	(1)	$O_2 < O_2^+ < O_2^-$	(2)	$O_2^- < O_2^- < O_2^+$
	(3)	$O_2^+ < O_2^- < O_2^-$	(4)	$O_2 < O_2^- < O_2^+$
	निम्न	में बन्ध क्रम का सही बढ़ता ह	क्रम क	ौनसा होगा?
	(1)	$O_2 < O_2^+ < O_2^-$	(2)	$O_2^- < O_2^- < O_2^+$
	(3)	$O_2^+ < O_2^- < O_2^-$	(4)	$O_2 < O_2^- < O_2^+$
49	(1) (3) 羽C	Continious determination	(4)	
	(1)	सही दोषनिर्धारण	(2)	कोरा (ब्लैंक) निर्धारण
	(3)	लगातार निर्धारण	(4)	समानान्तर निर्धारण
50	The	structure of $(C_5H_5)_2$ Sn is		
	(1)	Linear	(2)	Angular
	(3)	Linear Sandwich	(4)	Angular Sandwich
	(C_5)	$\left(\mathrm{H_{5}}\right) _{2}\mathrm{Sn}$ की संरचना है :		
	(1)	रेखीय	(2)	कोणीय
	(3)	रेखीय सैन्डविच	(4)	कोणीय सैन्डविच
97	41		16	[Contd

The correct equation for half life $\begin{pmatrix} t_{1/2} \end{pmatrix}$ period of	of radioactive element is
--	---------------------------

- (1) $t_{1/2} = 0.693 \lambda$
- (2) $t_{1/2} = 0.693/\lambda$
- (3) $t_{1/2} = 2.303/\lambda$
- (4) $t_{1/2} = 2.303 \,\lambda$

किसी रेडियोधर्मी तत्व की अर्धआयु $\begin{pmatrix} t \\ 1/2 \end{pmatrix}$ व्यक्त करने हेतु सही समीकरण है :

- (1) $t_{1/2} = 0.693 \lambda$
- (2) $t_{1/2} = 0.693/\lambda$
- (3) $t_{1/2} = 2.303/\lambda$
- (4) $t_{1/2} = 2.303 \,\lambda$

The choice of solvent for extraction from water does not depend upon which of the following?

- (1) High distribution ratio for the solute
- (2) Low solubility in aqueous phase
- (3) High viscosity and oxidisability
- (4) Selectively and shemically inactive terials.com जल से निष्कर्षण में विलायक का विकल्प निम्न में से किस पर निर्भर नहीं करता है?
- (1) विलेय के लिए उच्च वितरण अनुपात
- (2) जलीय भाग में कम घुलनशीलता
- (3) उच्च श्यानता एवम आक्सीकरण
- (4) निर्धारित एवं रासायनिक रूप से अक्रिय

53 Part of computer which controls all functions is

(1) Keyboard

- (2) Monitor
- (3) Central Processing Unit
- (4) Hard Disc

कम्प्यूटर का वह भाग जो सभी क्रियाओं को नियन्त्रित करता है

(1) की - बोर्ड

- (2) मानीटर
- (3) सैन्ट्रल प्रोसैसिंग यूनिट
- (4) हार्ड डिस्क

97_A]

17

54	Which solvent is more convenient	for organic synthesis?
	(1) Liq. NH ₃ (2) Liq. SO ₂
	(3) H ₂ O ((4) Liq. HF
	कौनसा विलायक कार्बनिक संश्लेषण के	लिए अधिक सुविधाजनक है?
	(1) রুব NH ₃	(2) द्रव SO ₂
	(3) H ₂ O	(4) द्रव HF
55	The COD measures the	
		for growth of microorganisms in water
	(2) Amount of Oxygen that wou oxidize pollutants	uld be removed from water in order to
	(3) Amount of Oxygen required pollutants present in water.	d to oxidize the substances other than
	(4) None of the above	
	COD द्वारा मापा जाता है,	
	(1) आक्सीजन की वह मात्रा जो जं आवश्यक है।	ल में सूक्ष्म जीवाणुओं की वृध्धी के लिये
	(2) आक्सीजन की वह मात्रा जो प्रदृ	रूपक को आक्सीकृत करने में प्रयुक्त होती है।
	(3) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	कें के अस्या भ्या पुदार्थों को जल में आक्सीकृत
	(4) उपरोक्त में से कोई नहीं।	
56	•	between the energy states V=1 and V=2 umber) is which of the following
	(1) hv	$(2) \left(\frac{1}{2}\right) hv$
	(3) $\left(\frac{3}{2}\right)$ hv	$(4) \left(\frac{5}{2}\right) hv$
	निम्न में से कोन ऊर्जा स्तर V=1 एवं	V=2 (जहाँ पर 'V' कम्पनिक क्वाँटम संख्याएँ)
	के मध्य ऊर्जा $\left(\mathrm{DE}_{rib} ight)$ अंतर है ?	
	(1) hv	$(2) \left(\frac{1}{2}\right) hv$
	(3) $\left(\frac{3}{2}\right)$ hv	(2) $\left(\frac{1}{2}\right)$ hv (4) $\left(\frac{5}{2}\right)$ hv
97	_A[18 [Contd

57	Tota	I number of electrons in or	bit is	given by
	(1)	$2n^2$	(2)	n^2
	(3)	(2l+1)	(4)	Total s values
	कक्ष	में कुल इलैक्ट्रॉनों की संख्या व्य	ाक्त व	ी जाती है –
	(1)	_{2n² द्वारा}	(2)	n ² द्वारा
	(3)	(21+1) द्वारा	(4)	कुल s के मान से
58	(1) (2) (3) (4)	li metals in liquid ammonia An amide ion is formed They contain alkali metal The solvation of free elect An ion pair is formed	catior trons	ns
		ा धातु द्रव NH ₃ में नीला रंग	। प्रदा	शत किस कारण स करत ह?
	(1) (2)	एमाइड आयन के बनने से क्षारीय धातु के धनायन की उ		,
	(3)	मुक्त इलेक्ट्रॉनों का विलायनीकृत		
	(4)	आयन युग्म बनना	(50	vaciony of ii
59	(1) (2) (3) (4)	Paper chromatography High Performance liquid co Gas chromatography Ion - exchange chromatorg	hroma raphy	
		प्रकार का क्रामटाग्राफी प्रथम बा पेपर क्रोमेटोग्राफी		शिका विश्लेषण के नाम से दी गई।
	` '	गैस क्रोमेटोग्राफी	(2) (4)	
60	Fireb	ricks are the example of	` '	3.4
	(1)	Ceramics	(2)	Refractory
	(3)	Glass	(4)	Caly
		में काम आने वाली इंटें उदाहर सिरैमिक्स	(पाह (2)	रिफ्रैक्टरी
		ग्ला स	(2) (4)	मिट्टी मिट्टी
97_A		1	9	[Contd

61	Metals which induce their had essential elements are	rmful effects in organisms by mir	nicking
	(1) Al and Ni	(2) Pb and Cd	
	(3) Cr and Zn	(4) Na and Ca	
	वे धातु जो अपने नुकसान दायक । रूप अपना कर उत्पन्न करते है।	रुष्प्रभावों को जीवों में, आवश्यक तत्वों	का छदम
	(1) Al एवं Ni	(2) Pb एवं Cd	
	(3) Cr एवं Zn	(4) Na एवं Ca	
62	The best method for disinfect	ion of swimming pool water is	
	(1) UV rays treatment	(2) Filteration	
	(3) Heating	(4) None	
	तरणताल के जल को कीट रहित	करने के लिये सर्वोत्तम विधि है :	
	(1) परा बैंगनी किरणों का प्रयो	ग (2) छनन	
	(3) गर्म करना	(4) उपरोक्त में से कोई नहीं।	
63	Acetyl Acetonate is used for	the extraction of	
	(1) Beryllium	(2) Boron	
	(3) WMolyldenupSCStU एसीटिल एसीटोनेट किसके निष्कर्ष	dythasierials.com ग में प्रयुक्त होता है।	
	(1) बैरीलियम	(2) बोरोन	
	(3) मोलीब्डेनम	(4) सिल्वर	
64	Which of the following is an	outer orbital complex ?	
	(1) $K_4[Fe(CN)_6]$	$(2) K_3[FeF_6]$	
	(3) $K_3[Fe(CN)_6]$	(4) $K_2[Fe(CN)_5 NO]$	
	निम्न में से कौन सा बाह्य कक्षी	य संकुल का उदाहरण है?	
	(1) $K_4[Fe(CN)_6]$	(2) $K_3[FeF_6]$	
	(3) $K_3[Fe(CN)_6]$	(4) $K_2[Fe(CN)_5 NO]$	
97	_A]	20	[Contd

65	The of t	partition ratio in gas chror the following:	natog	raphy does not depend upon which					
	(1)	Nature of the solute							
	(2)	(2) Nature of the solvent							
	(3)	Concentration of the liqui	d pha	ise					
	(4)	Pressure	•						
	गैस	क्रोमेटोग्राफी में विभाजन अनुपात	निम्न	में से किस पर निर्भर नहीं करता है :					
	(1)	विलेय की प्रकृति		विलायक की प्रकृति					
	(3)	_	(4)	दाब					
66	Whi	ch of the following is incom lkali metals ?	rect i	in case of the ammoniacal solution					
	(1)	Good conductors of electr	icity						
	(2)	Stable at room temperature	e						
	(3)	0							
	(4)	3 3							
	क्षारीय	य धातुओं के अमोनिया विलयन	के सं	दर्भ में निम्न में से कौन सही नहीं है ?					
	(1)	विद्युत के सुचालक हैं।	(2)	सामान्य ताप पर स्थायी हैं।					
	(3)	प्रकृति में प्रतिचुम्बकीय हैं।	(4)	अच्छे अपचायक हैं।					
67	The of w	reside under the name Zipax which of the following	dy e	mployed in TIPEC for the separation					
	(1)	Anions	(2)	Cations					
	(3)	LSD	(4)	Heroin					
	रेजिन में से	ि जिसे 'जिपाक्स' के नाम से एच किसको अलग करती है?	. पी.	एल. सी. में प्रयुक्त किया जाता है, निम्न					
	(1)	एनायन	(2)	कैशयन					
	(3)	एल. एस. डी.	(4)	हीरोइन					
68	Heav	y metals are toxic and get	depo	sited in which of the following:					
	(1)	Kidneys	(2)	Liver					
	(3)	Bones	(4)	All					
	भारी	धातुऐं विषैली होती है एवं निम	न में	से किन पर जमा होती है?					
	(1)	गुर्दा	(2)	यकृत					
	(3)	हिंड्याँ	(4)	इन सभी में					
97_A		•	21	[Contd					

69	The diseases such as skin cancer deformity in bones, loss of hair and congestion in throat are caused by which types of pollution,							
	(I)							
	(2)	Biological						
	(3)	Pesticide						
	(4)	Mining and processing of ores						
	बीमा	रेयाँ जैसे त्वचा का कैंसर, हिड्डियों में बदलाव, बालो का झडना एवं	गले में					
	रूकाव	वट होना का कारण किस प्रकार का प्रदूषण है ?						
	(1)	रेडियो धर्मिता (बम्ब फटने से)						
	(2)	जैविक						
	(3)	पीडकनाशी						
	(4)	खदान एवं अयष्क का निष्कर्षण						
70	antit	pH of waste water from synthetic drug industry producing sulfatubercular drugs and vitamins is,	drugs,					
	(1)	0.5 (2) 0.8						
	(3)	5.5 (4) 8.5	िकलने					
	सल्फ	ज-दवाइयाँ, ट्यूबरकुलर प्रतिरोधी दवाइयाँ एवं विटामिन बनाने वाले उद्योग से	เขตเข					
	વાલ (1)	द्धित जल की pH क्या होती है materials.com 0.5						
	(3)	5.5 (4) 8.5						
71	The	e institution which first time reported ozone hole is,						
	(1)	Meteorological Research Institute, Japan						
	(2)	Meteorological Research Institute, UK						
	(3)	National Aeronautic and Space Administration, USA						
	(4)	Meteorological Research Institute, Canada						
	वह	संस्था जिसने पहली बार ओजोन छिद्र की जानकारी दी थी,						
	(1)	मौसम विज्ञान शोध संस्थान, जापान						
	(2)	मौसम विज्ञान शोध संस्थान, यु.के.						
	(3)	राष्ट्रीय वैज्ञानिक एवं अंतरिक्ष प्रबन्धन, अमेरिका						
	(4)	मौसम विज्ञान शोध संस्थान, कनाडा						
97	_A]	22	Contd					

72						following period ?
	(1)	March -	r - Octobe April	` '	November -	
	• •		•	(4 <i>)</i> H. Wun ma	June - July ग्तः होता है :	
		सितम्बर –				
		ासतम्बर – मार्च – अ	-,		नवम्बर - दिस	। म्बर
	(3)	माघ – अ	प्रल	(4)	जून - जुलाई	
73	Whi	ch of the	following i	is known as	inorganic ben	zene ?
	(1)	B_6H_6		(2)	$B_3N_3H_6$	
	(3)	B_2H_6		(4)	$B_{4}H_{10}$	
	निम्न	में से किसे	अकार्बनिक	बैंजीन नाम	दिया गया है?	
	(1)	B_6H_6		(2)	$B_3N_3H_6$	
	(3)	B_2H_6		(4)	$\mathrm{B_4H}_{10}$	
74	(1) (2) (3) (4) उभया (1) (2) (3)	Neither ad Accept ar Give prot Accept pr प्रोटोनी पदार्थ	ccept nor ; id give pro ons only otons only वे होते हैं न लेते हैं न भी है जिस	, जो कि		s.com
75	Orga	national sta inization (W nium per li	VHO) for t	drinking woxic metals	ater as preseril such as arseni	ped by World Health c, lead, mercury and
	(1)	$1.0\mu g$	10µg	lμg	0.01mg	
	(2)	$1.0 \mu g$	5μg	0.01 µg	0.1mg	
	(3)	5μg	10µg	lμg	0.1mg	
	(4)		$0.05\mu \mathrm{g}$		0,1 mg	
						ते लिटर पीने योग्य जल
				ने अंतरराष्ट्री	य मानक दिये है,	निम्न में सही कौन है।
	(1)	1.0µg	10μg	lμg	0.01mg	
		1.0µg	5µg	$0.01\mathrm{\mu g}$	0.1mg	
		5μg	10 µg	1μg	0.1 mg	
	(4)	0.5 μg	0.05 µg	1μg	0.1mg	
97_A	.]			23		[Contd

76	The major	contribution	to	acid	rains	is	made	by	which	of	the	following:
----	-----------	--------------	----	------	-------	----	------	----	-------	----	-----	------------

- (1) $\left(CO_2 + CO\right)$ (2) $\left(SO_2 + NO_x\right)$
- (3) Only $\left(SO_2 + CO_2\right)$ (4) Only $\left(NO_x + CO_2\right)$

निम्न में से किसका अम्लीय वर्षा के लिए वृहद योगदान रहा है :

- (1) कार्बनडाई आक्साइड + कार्बन मोनोक्साइड
- (2) सल्फर डाई आक्साइड + नाइट्रोजन के आक्साइडस
- केवल (सल्फर डाइ आक्साइड + कार्बन डाइ आक्साइड) (3)
- (4) केवल (नाइट्रोजन के आक्साइड + कार्बन डाई आक्साइड)
- The number of translational, rotational and vibrational degree's of freedom 77 for acetylene is:
 - (1) 3, 2, 7

(2) 3, 3, 6

(3) 2, 3, 7

(4) 3, 3, 5

एसिटिलीन के लिए स्थानांतरीय, घूर्णन एवं काम्पनिक स्वतंत्रय कोटि है :

(1) 3, 2, 7

- (2) 3, 3, 6
- (3) www.upscstudymaterials.com
- By solvent extraction method Uranium is separated from Cerium and 78 Thorium by using the reagent
 - (1) Dithizone
 - Cupferron (2)
 - Thionoyltrifluoroacetone (TTA) (3)
 - Amberlite (4)

विलायक निष्कर्षण विधि से यूरेनियम को सीरियम और थोरियम से पृथक करने के लिये कौनसा अभिकर्मक काम में लेते हैं ?

- (1) डाइथाईजोन
- (2) कपफैरोन
- (3) थायोनोईल ट्राइफ्लोरो एसीटोन (TTA)
- (4) एम्बरलाइट

97 A

24

/9	(1)			icides are least bio degradable :
	(2)	Organo chlorine compour Organo phosphorus comp		
	(3)	Organo carbonates	ounus	•
	(4)	All above		
		में से कौन से कीटनाशक सब	बसे कम	जैविक क्षरण होते है?
	(1)	ओरगेनो क्लोरीन यौगिक		
	(3)	ओरगेनो कारबामेट्स		
80	Whie with	ch type of extraction is emp	oloyed	in extraction of iron (iii) from HCl
	(1)	Chelato	(2)	Solvation
		Ion-pair formation	` '	· •
	किस ईथर	प्रकार की निष्कर्षण विधि आइः द्वारा प्रयुक्त की जाती है ?	रन (iii)	को हाइड्रोक्लोरिक अम्ल से डाई-इथाइल
	(1)	कीलेट	(2)	विलायकीयन
	(3)	आयन–प्रय का बनना	(4)	संकार्मिक
81	Whic	RhH(CO)(PPh,) WWW.UPSCStu		·
	(3)	$\left(PPh_3\right)_3$ Rh Cl	(4)	Rh $Cl(H_2)(PPh_3)_3$
	निम्न	में से कौनसा विल्किन्सन उत्प्रेर		J
	(1)	$RhH(CO)(PPh_3)_3$	(2)	$Rh Cl_2(CO)_2$
	(3)	$\left(PPh_3\right)_3$ Rh Cl	(4)	Rh Cl(H2)(PPh3)3
82	Cons of th	titutional provisions to previe following year?	ent wa	ter pollution were made in which
	(1)	1972	(2)	1974
	(3)	1981	` '	1986
		में से किस वर्ष में जल प्रदूषण	रोकने व	तिए कानूनी प्रावधान किये गये थे ?
	(1)	19 7 2	(2)	1974
	(3)	1981	(4)	1986
97_A]		25	[Contd

83			ty from the following?	
	(1) Seaberg	(2)		
	(3) Einstein	` '	Irene curie and Juliot	
		रेडियो धर्मिता की खोज		
	(1) सीबर्ग		रदरफोर्ड	
	(3) आइन्सटाइन	(4)	ईरेन क्यूरी एवं जूलीयट	
84	Relative deviation			
	(1) Accuracy		Precision	
	(3) Absolute em		Prejudice	
		मान व्यक्त करता है	^	
	(1) यथार्थता	·	परिशुद्धता	
	(3) निरपेक्ष त्रुटि	(4)	पूर्वानुभास	
85	Which of the f temperature?	ollowing does not	cause rising in the me	an global
	(1) NOx	(2)	SO ₂	
	(3) O ₃	(4)	CH_4	
		गध्य भमण्डलीय ताप ग	नें बढ़ोतरी नहीं करता है?	
	(1) नाहरीजन के	आक्सादड (2)	सल्फर डाई आक्साइड	
			aterials.com	
	(3) WMWW.U	pscstadytr	iateriais.com	
86	H ₂ O is a liquid	where as H ₂ S is	a gas because of	
	(1) Presence of	f H - bonding in F	I ₂ O	
	(2) Formation	of H ₃ O ⁺ ions in ¹	H ₂ O	
	(3) Low boilin	g point of H ₂ S		
	(4) Different g	geometry of H ₂ S		
	H ₂ O एक द्रव है	जबिक $ m H_2S$ एक गै	स क्योंकि	
	-	ड्रोजन बन्ध पाये जाते		
	(2) जल में H ₃	O^+ आयन का निर्माण	होता है।	
	(3) H ₂ S का ब	म्वथनांक निम्न है।		
	(4) H ₂ S की उ	त्र्यामिती भिन्त है।		
97	_A]	26		[Contd

87	Bio the	o - degradability of pest following ?	icides in so	oil is strongly affected by which of
	(1)	Soil temperature	(2)	Soil moisture
	(3)	Soil texture	(4)	All
	कीट	नाशकों की जैविक क्षरणता	निम्न में से	किसके द्वारा अत्यधिक प्रभावित होती है?
	(1)			मृदा आर्द्रता
	(3)	मृदा गठन	(4)	उपरोक्त सभी
88	În	case of acetone low res	solution an	d high resolution NMR show
	(1)	Singlet	(2)	Doublet
	(3)	Tripplet	(4)	Quartet
	एन.	एम. आर. का निम्न वियो	जन एवं उच	च वियोजन एसीटोन के लिए दर्शाता हैः
	(1)	एकक	(2)	द्विक
	(3)	त्रिक	(4)	चतुर्थक
89	Whi	ich of the following is	NMR acti	ve and gives NMR spectra?
		C ¹²		O ¹⁶
	(3)	F ¹⁹	(4)	Si ³²
	निम्न	ं में से कौन NMR सकिय	है व्या ১	Matemais.com
	(1)	C12	(2)	O ¹⁶
	(3)	F ¹⁹	(4)	Si ³²
90	Whi	ch one of following is	not Hardy	
,	(1)	Keyboard	noi Haiuv	vale ?
	(2)	Monitor		
	(3)	MS Word (Microsoft	Word)	
	(4)	Printer	,	
	निम्न	में से कौन सा हाईवेयर	नहीं है ?	
	(1)	की बोर्ड		
	(2)	मॉनीटर		
	(3)	एम. एस. वर्ड (माइक्रोसोप	न्ट वर्ड)	
	(4)	प्रिंटर		
97_A	` '		27	[Contd

91	Organic compounds of mercury t	hat p	ollute the soil are
	(1) Insecticides	(2)	Herbicides
	(3) Fungicides	(4)	Parathion
	मरकरी के कार्बनिक यौगिक है जो मि	ाट्टी व	को प्रदूषित करते है :
	(1) कीटनाशक	(2)	शाकनाशी
	(3) कवकनाशी	(4)	पैरधायोन
92	Fullerenes are,		
	(1) Polymers of fluorine		
	(2) Macrocyclic compounds		
	(3) Family of polyhedral carbo	n allo	otropes
	(4) Supramolecules		
	फुलैरीन्स है :		
	(1) फ्लोरीन के बहुलक		
	(2) बृहद चक्रीय यौगिक		
	(3) बहुफलकीय कार्बन अपरूपों का	परिव	ार
	(4) सुप्राअणु		
93	W.W.W. (World Wide Web) was	disc $\binom{2}{2}$	overed by which institute
	(3) NASA	(4)	None of the above
	डब्लू. डब्लू. डब्लू. (World Wide W	/eb) 🥫	की खोज किस संस्था द्वारा की गई थी,
	(1) CERN	(2)	BARC
	(3) NASA	(4)	उपरोक्त में से कोई भी नहीं
94			of CO ₂ in the atmosphere to the
	approximate excent of which of	f the	
	(1) 20 percent	(2)	
	(3) 40 percent	` .	50 percent
	वायुमण्डल में कार्बन—डाई–आक्साइड लगभग किस हद तक रोका जा सव		इती मात्रा को वनोन्मूलन द्वारा निम्न में से
	(1) 20 प्रतिशत	(2)	30 प्रतिशत
	(3) 40 प्रतिशत	(4)	50 प्रतिशत
97	7_A]	28	[Contd

97_A	()		29	[Contd
	(3)	त्रिभुजीय पिरामिडी	(4)	चतुष्फलकीय
	(1)	वर्ग समतलीय	(2)	रेखीय
	(СН	$\left(\frac{1}{3}\mathrm{Li}\right)_4$ की संरचना होती है		
	(3)	Trigonal Pyramidal	(4)	Tetrahedral
	(1)	Square Planner	(2)	Linear
97	(сн	$(a_3Li)_4$ has the structure		
	(3)	p 66114 (0XI) 0110	(4)	113,503
		p-C ₆ H ₄ (OH)CHO		H ₃ BO ₃
		WWW UDSCSTUC	_	
	निम्न	में से कौन अन्तराआणविक हा	इड्रोजन	। बन्धन दर्शाता है?
	(3)	$p-C_6H_4$ (OH)CHO	(4)	H_3BO_3
	(1)	$o-C_6H_4(OH)CHO$	(2)	HF
96	Whi	ch of the following shows	intran	nolecular H - bonding ?
	(3)	Mn(CO) ₄ (NO)	(4)	Fe(CO)(NO) ₂
	(1)	$Fe(CO)_2(NO)_2$	(2)	$Mn(CO)(NO)_3$
	निम्न नहीं	ं में कौन मिश्रित नाइट्रोसिल एवं है ?	कार्बो	निक यौगिक संरचना के आधार पर सही
	(3)	$Mn(CO)_4(NO)$	(4)	Fe(CO)(NO) ₂
	(1)	$Fe(CO)_2(NO)_2$	(2)	$Mn(CO)(NO)_3$
95	Wh stru	ich of the following mixed cturally incorrect?	ed nit	trocyl and carboxyl compound is

Which complex of chromium from the following will show optical activity? 98

- (1) $\operatorname{trans} \left[\operatorname{Cr}(\operatorname{en})_2 \operatorname{Br}_2 \right] \operatorname{Br}$
- (2) $\operatorname{Cis} \left[\operatorname{Cr}(\operatorname{en})_{2}\operatorname{Br}_{2}\right]\operatorname{Br}$
- (3) $\operatorname{trans} \left[\operatorname{Cr} \left(\operatorname{NH}_{3} \right)_{4} \operatorname{Br}_{2} \right] \operatorname{Br}$
- (4) $\left[\operatorname{Cr} \left(\operatorname{NH}_{3} \right)_{6} \right] \operatorname{Cl}_{3}$

क्रोमियम के निम्न संकुल यौगिकों में से कौनसा प्रकाशीय समावयता दर्शायेगा ?

- (1) $\operatorname{trans} \left[\operatorname{Cr}(\operatorname{en})_2 \operatorname{Br}_2\right] \operatorname{Br}$
- (2) $\operatorname{Cis} \left[\operatorname{Cr}(\operatorname{en})_2 \operatorname{Br}_2\right] \operatorname{Br}$
- (3) $\operatorname{trans} \left[\operatorname{Cr} \left(\operatorname{NH}_{3} \right)_{4} \operatorname{Br}_{2} \right] \operatorname{Br}$
- (4) $\left[\operatorname{Cr}\left(\operatorname{NH}_{3}\right)_{6}\right]\operatorname{Cl}_{3}$

Working range of which solvent is more convenient 99

- (1) Liq. NH₃ www.upscstudymaterials.com
 (3) Liq. HF (4) Liq. BrF₃

किस विलायक की कार्यकारी सीमा ज्यादा सुविधाजनक हैं ?

(1) द्रव NH₃

(2) द्रव SO₂

(3) **द्रव** HF

(4) द्रव BrF₂

100 Which of the following, organo mercury compounds is not 'fluxional'

(1) RHgX

- (2) (C_5H_5) , Hg
- (3) C_5H_5HgX
- (4) $(C_9H_7)_7$ Hg

निम्न में से कौनसा ऑर्गेनो मरकरी यौगिक प्रवाही संरचना नहीं है ?

(1) RHgX

- (2) $\left(C_5H_5\right)_2$ Hg
- (3) C_5H_5HgX
- (4) $\left(C_{9}H_{7}\right)_{2}$ Hg

97_A]

30

SPACE FOR ROUGH WORK / कच्चे काम के लिये जगह

www.upscstudymaterials.com

97_A]

31

SPACE FOR ROUGH WORK / कच्चे काम के लिये जगह

www.upscstudymaterials.com

97_A]

KEY	JUNIOR CHEMIST	(GROUND WATER DEPTT.)	06/06/2013
-----	----------------	-----------------------	------------

	KEY
SET_A	RES
1	2
2	2
3	3
4	2
5	4
6	3 2
7	2
8	3
9	1
10	2
11	1
12	1
13	4
14	3
15	3
16	3
17	1
18	2
19	4
20	1
21	1
22	2
23	1
24	1
25	1
26	3 3 2
27	3
28	2
29	2
30	4
31	2
32	2
33	1
34	2
35	4
36	4
37	2
38	2
39	3
40	1
41	3
42	3
43	3
44	
45	1
46	3

SET_A RES 51 2 52 3 53 3 54 2 55 2 56 1 57 1 58 3 59 1 60 2 61 2 62 1 63 1 64 2 65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 86 1 87 4 88 1 89 3 90 3 91	R CHEMI	ST (GRC
52 3 53 3 54 2 55 2 56 1 57 1 58 3 59 1 60 2 61 2 62 1 63 1 64 2 65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 <td< th=""><th>SET_A</th><th>RES</th></td<>	SET_A	RES
53 3 54 2 55 2 56 1 57 1 58 3 59 1 60 2 61 2 62 1 63 1 64 2 65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 <td< td=""><td>51</td><td>2</td></td<>	51	2
54 2 55 2 56 1 57 1 58 3 59 1 60 2 61 2 62 1 63 1 64 2 65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 <td< td=""><td>52</td><td>3</td></td<>	52	3
54 2 55 2 56 1 57 1 58 3 59 1 60 2 61 2 62 1 63 1 64 2 65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 <td< td=""><td>53</td><td>3</td></td<>	53	3
56 1 57 1 58 3 59 1 60 2 61 2 62 1 63 1 64 2 65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 <td< td=""><td>54</td><td>2</td></td<>	54	2
57 1 58 3 59 1 60 2 61 2 62 1 63 1 64 2 65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 <td< td=""><td>55</td><td>2</td></td<>	55	2
58 3 59 1 60 2 61 2 62 1 63 1 64 2 65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	56	1
59 1 60 2 61 2 62 1 63 1 64 2 65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	57	1
60 2 61 2 62 1 63 1 64 2 65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 ////3/ U 2/5/ 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1	58	3
62 1 63 1 64 2 65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 ////3/ U 2 S 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1	59	1
62 1 63 1 64 2 65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 ////3/ U 2 S 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1	60	2
63 1 64 2 65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 ////3/ U 2 S 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4	61	
64 2 65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 ////3/ U 2 S 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4	62	1
65 4 66 3 67 2 68 4 69 1 70 2 71 1 72 1 ////3/ U 2 S 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4	63	1
66 3 67 2 68 4 69 1 70 2 71 1 72 1 ////3/ U 2 S 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4	64	2
67 2 68 4 69 1 70 2 71 1 72 1 ////3/ U 2 S 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4	65	
67 2 68 4 69 1 70 2 71 1 72 1 ////3/ U 2 S 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4	66	3
69 1 70 2 71 1 72 1 ////3V U 2 S 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4	67	2
70 2 71 1 72 1 ////8V U 2S 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	68	4
71 1 72 1 ////8V U S 74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4	69	1
72 1 /\//3\/ U 2\S(74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	70	2
74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	71	
74 2 75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4		
75 1 76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	/\//\ [*] \/.	U ₂ S
76 2 77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	74	2
77 1 78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	75	
78 3 79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4		
79 1 80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	77	1
80 2 81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	78	
81 3 82 2 83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	79	1
83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	80	
83 4 84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	81	3
84 2 85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	82	
85 2 86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	83	
86 1 87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	84	
87 4 88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	85	
88 1 89 3 90 3 91 3 92 3 93 1 94 4 95 4	86	
89 3 90 3 91 3 92 3 93 1 94 4 95 4		
90 3 91 3 92 3 93 1 94 4 95 4		
91 3 92 3 93 1 94 4 95 4		3
92 3 93 1 94 4 95 4		
93 1 94 4 95 4		
94 4 95 4		_
95 4		
96 1		
	96	1

cstudymaterials.com

47	4
48	2
49	3
50	4

97	4	
98	2	
99	4	
100	1	

www.upscstudymaterials.com